当前位置:首页 > 单片机 > 单片机
[导读]一、CMSIS标准  ST公司的stm32采用的是cortex-m3内核,内核是整个微处理器的CPU。该内核是ARM公司设计的一种处理器体系架构。内核与外设的关系就像PC上的CPU与硬盘、主板、内存等的关系一样。基于cortex系列的处理

一、CMSIS标准

  ST公司的stm32采用的是cortex-m3内核,内核是整个微处理器的CPU。该内核是ARM公司设计的一种处理器体系架构。内核与外设的关系就像PC上的CPU与硬盘、主板、内存等的关系一样。

基于cortex系列的处理器内核都是一样的,区别在于除内核以外的外设的差异,由于这些差异,导致不同处理器移植起来比较麻烦,所以ARM与芯片厂商建立了CMSIS标准,CMSIS架构如下所示:

  CMSIS标准中最主要的是CMSIS核心层;内核函数层中的内核函数寄存器以及地址主要由ARM公司提供;设备外设访问层核外外设和中断寄存器地址由芯片生产厂商定义。

二、库目录和文件简介

1、core_cm3.c文件

  在CoreSupport文件夹中有core_cm3.c和头文件core_cm3.h,它的作用是采用Cortex-M3内核设计的SoC芯片厂商设计的芯片提供了一个进入CM3内核的接口。core_cm3.c中还有一些与编译器(MDK、IAR等)有关的代码。较重要的是core_cm3.c中包含stdio.h头文件,这是一个ANSI C文件,主要作用是提供一些新类型的定义。

2、system_stm32f10x.c文件

  DeviceSupport文件夹下是启动文件、外设寄存器定义、中断向量定义层的一些文件,这些文件由ST公司提供。system_stm32f10x.c的主要作用是设置系统时钟和总线时钟。

3、stm32f10x.h文件

  这个文件非常重要,是非常底层的文件,包含了寄存器地址和结构体类型的定义,在使用到stm32固件库的地方都要包含它。

3、stm32f10x_it.c和stm32f10x_conf.h文件

  stm32f10x_it.c这个文件主要是编写中断程序的,stm32f10x_conf.h被包含在stm32f10x.h文件中主要是配置外设的头文件,我们需要什么在这里打开。

4、startup_stm32f10x_hd.s文件

  在这个文件中有一段启动文件,启动文件中先初始化系统时钟,然后才执行主函数,因此我们要注意配置时钟在这个文件里配置。

三、引脚端口的一些概念

1、一些寄存器

  1)配置寄存器:选择是输入还是输出。

  2)数据寄存器:保存了GPIO的输入电平或者将要输出的电平。

  3)为空值寄存器:设置引脚电平为1或0,控制输出电平。

  4)锁定寄存器:设置锁定引脚后,就不能修改其配置。

2、管脚时钟

  stm32拥有丰富的时钟系统,我们在配置管教时钟时,如果该管脚要用到其复用功能,我们必须也要初始化复用功能时钟。例如要使用PC1口的AD功能:

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE);

3、GPIO8种工作模式

  1)四种输入模式:上拉输入模式、下拉输入模式、浮空输入模式、模拟输入模式

  上拉输入模式(GPIO_Mode_IPU):与VDD相连的为上拉电阻,若引脚配置为上拉输入模式,默认情况下该引脚是高电平。

  下拉输入模式(GPIO_Mode_IPD):与VSS相连的为下拉电阻,若引脚配置为下拉输入模式,默认情况下该引脚是低电平。

  浮空输入模式(GPIO_Mode_IN_FLOATING):没有上拉电阻也没有下拉电阻,一般这种模式用于标准的通信协议:IIC、USART等的接收端。

  模拟输入模式(GPIO_Mode_AIN):使用ADC外设时,接口必须设置为,模拟输入模式。

  2)四种输出模式:推挽输出模式、开漏输出模式、复用推挽输出模式、复用开漏输出模式

  推挽输出模式(GPIO_Mode_Out_PP):一般用于0和3.3伏的场合。

  开漏输出模式(GPIO_Mode_Out_OD):一般用于电平不平衡的场合。

  任何一种开漏模式都要接上拉电阻。

  复用推挽输出模式(GPIO_Mode_AF_PP)

  复用开漏输出模式(GPIO_Mode_AF_OD)

4、中断

  stm32有100个引脚,GPIO口总共80个,分为GPIOA~GPIOE 5组,每组16个。每个IO口都可以作为中断源的输入,可以配置为上升沿中断,下降沿中断,上升沿下降沿中断


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭