当前位置:首页 > 单片机 > 单片机
[导读]【实验目的】输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。【实验内容】输出7路PWM信号,并用示波器测量输出。【实验原理】1、时

【实验目的】

输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。

【实验内容】

输出7路PWM信号,并用示波器测量输出。

【实验原理】

1、时基单元初始化

TIM1和TIM8使用内部时钟时,时钟由APB2提供。但是定时器的时钟并不是直接由APB2提供,而是来自于输入为APB2的一个倍频器。当APB2的与分频系数为1时,这个倍频器不起作用,定时器时钟频率等于APB2时钟。当APB2预分频系数为其他时这个倍频器起作用。定时器的输入频率等于APB2的2倍。本实验中,APB2时钟被设置成了84M是对系统时钟进行2分频。因此定时器的输入时钟是84M×2 = 168M = SYSCLK。(PS:这个倍频我在ST的手册上边没有找到,是网上搜索得到的结果,与实际结果对比是正确的)

TIM_Prescaler 为预分频值,为0时分频系数为1.

TIM_Period 为每个周期计数值,从0开始计数所以其值应为计数次数减去1。

TIM_RepetitionCounter是F4新增的一个东西,只有高级定时器TIM1和TIM8有效,对应寄存器RCR。意思就是每TIM_RepetitionCounter+1个技术周期产生一次中断。

我定义的时基如下,将产生频率为20K的即使基准:

TimerPeriod = (SystemCoreClock / 20000 ) - 1;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
//时基初始化
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向
TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

2、计时输出

ccr1、2、3、4为各个技术周期的TIM_Pulse。即每当计数到这些个值的时候,PWM波形就会反转。

ccr1 = TimerPeriod / 2; //占空比1/2 = 50%
ccr2 = TimerPeriod / 3; //占空比1/3 = 33%
ccr3 = TimerPeriod / 4; //占空比1/4 = 25%
ccr4 = TimerPeriod / 5; //占空比1/5 = 20%

定义输出部分:

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = ccr1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//输出同相,TIM_OCNPolarity_High时输出反相
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

TIM_OC1Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr2;
TIM_OC2Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr3;
TIM_OC3Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr4;
TIM_OC4Init(TIM1,&TIM_OCInitStructure);

TIM_Cmd(TIM1,ENABLE);
TIM_CtrlPWMOutputs(TIM1,ENABLE);

3、到这里就完成了定时器的配置,下边是GPIO引脚的配置

使用GPIOE的8、9、10、11、12、13、14引脚进行PWM输出。配置如下:

void TIM1_GPIO_Config(void)
{
//PE 8 9 10 11 12 13 14输出
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
| GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);

GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
}

输出波形图:

同相输出时候:

OC1/OC1N

OC2/OC2N

OC3/OC3/N

OC4

反相输出

OC1/OC1N

OC2/OC2N

OC3/OC3/N

OC4

完整的应用代码:

使用时只主要两行即可

//主函数调用

TIM1_GPIO_Config();
Tim1_Config();

//定时器输出引脚初始化

void TIM1_GPIO_Config(void)
{
//PE 8 9 10 11 12 13 14输出
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
| GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);

GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);

}

//TIM1做PWM输出
void Tim1_Config(void)
{
TimerPeriod = (SystemCoreClock / 20000 ) - 1;
ccr1 = TimerPeriod / 2; //占空比1/2 = 50%
ccr2 = TimerPeriod / 3; //占空比1/3 = 33%
ccr3 = TimerPeriod / 4; //占空比1/4 = 25%
ccr4 = TimerPeriod / 5; //占空比1/5 = 20%

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
//时基初始化
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器方向
TIM_TimeBaseInitStructure.TIM_Prescaler = 0; //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1; //Period = (TIM counter clock / TIM output clock) - 1 = 20K
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);


TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = ccr1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

TIM_OC1Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr2;
TIM_OC2Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr3;
TIM_OC3Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr4;
TIM_OC4Init(TIM1,&TIM_OCInitStructure);

TIM_Cmd(TIM1,ENABLE);
TIM_CtrlPWMOutputs(TIM1,ENABLE);
}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭