当前位置:首页 > 单片机 > 单片机
[导读]按键和液晶,可以组成我们最简易的计算器。下面我们来写一个简易整数计算器提供给大家学习。为了让程序不过于复杂,我们这个计算器不考虑连加,连减等连续计算,不考虑小数情况。加减乘除分别用上下左右来替代,回车

按键和液晶,可以组成我们最简易的计算器。下面我们来写一个简易整数计算器提供给大家学习。为了让程序不过于复杂,我们这个计算器不考虑连加,连减等连续计算,不考虑小数情况。加减乘除分别用上下左右来替代,回车表示等于,ESC 表示归 0。程序共分为三部分,一部分是 1602 液晶显示,一部分是按键动作和扫描,一部分是主函数功能。

/***************************Lcd1602.c 文件程序源代码*****************************/

#include

#define LCD1602_DB P0

sbit LCD1602_RS = P1^0;

sbit LCD1602_RW = P1^1;

sbit LCD1602_E = P1^5;

/* 等待液晶准备好 */

void LcdWaitReady(){

unsigned char sta;

LCD1602_DB = 0xFF;

LCD1602_RS = 0;

LCD1602_RW = 1;

do {

LCD1602_E = 1;

sta = LCD1602_DB; //读取状态字

LCD1602_E = 0;

//bit7 等于 1 表示液晶正忙,重复检测直到其等于 0 为止

}while (sta & 0x80);

}

/* 向 LCD1602 液晶写入一字节命令,cmd-待写入命令值 */

void LcdWriteCmd(unsigned char cmd){

LcdWaitReady();

LCD1602_RS = 0;

LCD1602_RW = 0;

LCD1602_DB = cmd;

LCD1602_E = 1;

LCD1602_E = 0;

}

/* 向 LCD1602 液晶写入一字节数据,dat-待写入数据值 */

void LcdWriteDat(unsigned char dat){

LcdWaitReady();

LCD1602_RS = 1;

LCD1602_RW = 0;

LCD1602_DB = dat;

LCD1602_E = 1;

LCD1602_E = 0;

}

/* 设置显示 RAM 起始地址,亦即光标位置,(x,y)-对应屏幕上的字符坐标 */

void LcdSetCursor(unsigned char x, unsigned char y){

unsigned char addr;

if (y == 0){ //由输入的屏幕坐标计算显示 RAM 的地址

addr = 0x00 + x; //第一行字符地址从 0x00 起始

}else{

addr = 0x40 + x; //第二行字符地址从 0x40 起始

}

LcdWriteCmd(addr | 0x80); //设置 RAM 地址

}

/* 在液晶上显示字符串,(x,y)-对应屏幕上的起始坐标,str-字符串指针 */

void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str){

LcdSetCursor(x, y); //设置起始地址

while (*str != ''){ //连续写入字符串数据,直到检测到结束符

LcdWriteDat(*str++);

}

}

/* 区域清除,清除从(x,y)坐标起始的 len 个字符位 */

void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len){

LcdSetCursor(x, y); //设置起始地址

while (len--){ //连续写入空格

LcdWriteDat(' ');

}

}

/* 整屏清除 */

void LcdFullClear(){

LcdWriteCmd(0x01);

}

/* 初始化 1602 液晶 */

void InitLcd1602(){

LcdWriteCmd(0x38); //16*2 显示,5*7 点阵,8 位数据接口

LcdWriteCmd(0x0C); //显示器开,光标关闭

LcdWriteCmd(0x06); //文字不动,地址自动+1

LcdWriteCmd(0x01); //清屏

}

Lcd1602.c 文件中根据上层应用的需要增加了 2 个清屏函数:区域清屏——LcdAreaClear,整屏清屏——LcdFullClear。

/**************************keyboard.c 文件程序源代码*****************************/

#include

sbit KEY_IN_1 = P2^4;

sbit KEY_IN_2 = P2^5;

sbit KEY_IN_3 = P2^6;

sbit KEY_IN_4 = P2^7;

sbit KEY_OUT_1 = P2^3;

sbit KEY_OUT_2 = P2^2;

sbit KEY_OUT_3 = P2^1;

sbit KEY_OUT_4 = P2^0;

unsigned char code KeyCodeMap[4][4] = { //矩阵按键编号到标准键盘键码的映射表

{ '1', '2', '3', 0x26 }, //数字键 1、数字键 2、数字键 3、向上键

{ '4', '5', '6', 0x25 }, //数字键 4、数字键 5、数字键 6、向左键

{ '7', '8', '9', 0x28 }, //数字键 7、数字键 8、数字键 9、向下键

{ '0', 0x1B, 0x0D, 0x27 } //数字键 0、ESC 键、 回车键、 向右键

};

unsigned char pdata KeySta[4][4] = { //全部矩阵按键的当前状态

{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}

};

extern void KeyAction(unsigned char keycode);

/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */

void KeyDriver(){

unsigned char i, j;

static unsigned char pdata backup[4][4] = { //按键值备份,保存前一次的值

{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}

};

for (i=0; i<4; i++){ //循环检测 4*4 的矩阵按键

for (j=0; j<4; j++){

if (backup[i][j] != KeySta[i][j]){ //检测按键动作

if (backup[i][j] != 0){ //按键按下时执行动作

KeyAction(KeyCodeMap[i][j]); //调用按键动作函数

}

backup[i][j] = KeySta[i][j]; //刷新前一次的备份值

}

}

}

}

/* 按键扫描函数,需在定时中断中调用,推荐调用间隔 1ms */

void KeyScan(){

unsigned char i;

static unsigned char keyout = 0; //矩阵按键扫描输出索引

static unsigned char keybuf[4][4] = { //矩阵按键扫描缓冲区

{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},

{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}

};

//将一行的 4 个按键值移入缓冲区

keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;

keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;

keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;

keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;

//消抖后更新按键状态

for (i=0; i<4; i++){ //每行 4 个按键,所以循环 4 次

if ((keybuf[keyout][i] & 0x0F) == 0x00){

//连续 4 次扫描值为 0,即 4*4ms 内都是按下状态时,可认为按键已稳定的按下

KeySta[keyout][i] = 0;

}else if ((keybuf[keyout][i] & 0x0F) == 0x0F){

//连续 4 次扫描值为 1,即 4*4ms 内都是弹起状态时,可认为按键已稳定的弹起

KeySta[keyout][i] = 1;

}

}

//执行下一次的扫描输出

keyout++; //输出索引递增

keyout &= 0x03; //索引值加到 4 即归零

switch (keyout){ //根据索引,释放当前输出引脚,拉低下次的输出引脚

case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;

case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;

case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;

case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;

default: break;

}

}

keyboard.c 是对之前已经用过多次的矩阵按键驱动的封装,具体到某个按键要执行的动作函数都放到上层的 main.c 中实现,在这个按键驱动文件中只负责调用上层实现的按键动作函数即可。

/*****************************main.c 文件程序源代码******************************/

#include

unsigned char step = 0; //操作步骤

unsigned char oprt = 0; //运算类型

signed long num1 = 0; //操作数 1

signed long num2 = 0; //操作数 2

signed long result = 0; //运算结果

unsigned char T0RH = 0; //T0 重载值的高字节

unsigned char T0RL = 0; //T0 重载值的低字节

void ConfigTimer0(unsigned int ms);

extern void KeyScan();

extern void KeyDriver();

extern void InitLcd1602();

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);

extern void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len);

extern void LcdFullClear();

void main(){

EA = 1; //开总中断

ConfigTimer0(1); //配置 T0 定时 1ms

InitLcd1602(); //初始化液晶

LcdShowStr(15, 1, "0"); //初始显示一个数字 0

while (1){

KeyDriver(); //调用按键驱动

}

}

/* 长整型数转换为字符串,str-字符串指针,dat-待转换数,返回值-字符串长度 */

unsigned char LongToString(unsigned char *str, signed long dat){

signed char i = 0;

unsigned char len = 0;

unsigned char buf[12];

if (dat < 0){ //如果为负数,首先取绝对值,并在指针上添加负号

dat = -dat;

*str++ = '-';

len++;

}

do { //先转换为低位在前的十进制数组

buf[i++] = dat % 10;

dat /= 10;

} while (dat > 0);

len += i; //i 最后的值就是有效字符的个数

while (i-- > 0){ //将数组值转换为 ASCII 码反向拷贝到接收指针上

*str++ = buf[i] + '0';

}

*str = ''; //添加字符串结束符

return len; //返回字符串长度

}

/* 显示运算符,显示

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

今天,小编将在这篇文章中为大家带来一种适老化跌倒检测预警系统硬件设计的有关报道,通过阅读这篇文章,大家可以对该类系统设计具备清晰的认识,主要内容如下。

关键字: STM32 单片机 微控制器

新产品加入了同类产品中唯一的蓝牙低功耗产品系列模块、片上系统(SoC)产品和即插即用选项

关键字: 蓝牙 片上系统 单片机

数字可编程变频电源是一种能够根据用户需求调整输出电压和频率的电源设备。它在工业生产和实验室研究等领域中被广泛使用。

关键字: 单片机 可编程电源 系统设计

可编程电源的基本原理是通过控制电源输出的电压和电流来满足用户的需求。一般情况下,可编程电源由电源模块、电压测量模块、电流测量模块和控制模块组成。

关键字: 单片机 可编程 电源

本设计的控制系统主要包括:倾斜模块、超声波模块、语音模块、光敏电阻模块及电源等。

关键字: 单片机 STC51

本文针对电动两轮车自燃防控装置的开发与分析进行了研究。通过电动两轮车自燃原因分析,提出了电动两轮车的自燃防控智能装置设计思路,介绍了电动两轮车的自燃防控智能

关键字: STC89C52RC 单片机 微控制器

现在市面上还不存在一种方便实验人员选取芯片,以及方便管理人员对芯片进行智能化管理的芯片柜,为此希望通过研发这款智能芯片柜,来解决以上问题。​

关键字: 单片机 芯片

这款全新的中端MCU系列为设计人员提供了更高水平的安全性和灵活性

关键字: 嵌入式 单片机

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式
关闭
关闭