当前位置:首页 > 医疗电子 > 医疗电子
[导读]21世纪数字成像技术的出现给我们带来优异的诊断功能、图像存档以及随时随地的检索功能。自20世纪70年代早期医学成像数字技术出现以来,数字成像的重要性得以日益彰显。半导体器件中混合信号设计能力方面的一些新进展

21世纪数字成像技术的出现给我们带来优异的诊断功能、图像存档以及随时随地的检索功能。自20世纪70年代早期医学成像数字技术出现以来,数字成像的重要性得以日益彰显。半导体器件中混合信号设计能力方面的一些新进展,让成像系统实现了史无前例的电子封装密度,从而带来医学成像的巨大发展。同时,嵌入式处理器极大地提高了医疗图像处理和实时图像显示的能力,从而实现了更迅速、更准确的诊断。这些技术的融合以及许多新兴的电子健康记录标准为更为完善的病人护理提供了发展动力。

本文将介绍不同成像方法电子设计存在的诸多挑战和一些最新动态,具体包括数字 X 射线、磁共振成像 (MRI) 和超声波系统。

数字X射线系统

传统的X射线系统使用一种胶片/屏幕装置来检测发射到人身体的 X 射线。然而,探测器系统中的数字 X 射线信号链包含一个照片探测器阵列,该探测器阵列将辐射转换成电荷。其后面是一些电荷积分器电路和模数转换器 (ADC)电路,以数字化输入。图1显示了一个典型数字 X 射线系统结构图的例子。

图1 数字X射线系统结构图示例

数字X射线系统性能与积分器和ADC模块的噪声性能密切相关。为了在低功耗条件下获得更高的图像质量,某个系统中支持大量信号通道所需的电子集成程度为技术的创新设定了一定的标准。正是由于组成探测器系统的许多高性能模拟组件以及执行高级图像处理任务的嵌入式处理器, X射线系统才拥有了许多相对于传统X射线系统的优势。这种组合支持更大的动态范围,从而可以获得更好的图像对比度和更低的患者X射线辐射水平,同时产生可电子存储和传输的数字图像。  

超声波系统

超声波系统的接收通道信号链包括低噪声放大器 (LNA)、可变增益放大器 (VGA)、低通滤波器 (LPF) 和高速高精度ADC。紧跟在这些组件后面的是数字波束生成、图像和多普勒处理以及其他信号处理软件(请参见图2)。

图 2 超声波系统结构图示例

信号链组件的噪声和带宽特性定义了系统的总性能上限。[1]另外,在耗散更低系统功率的同时,需要在更小的区域内集成更多的高性能通道。典型的手持式超声波系统可能具有约16到32条通道,而一些高端系统可能会有128条以上的通道,以获得更高的图像质量。要减少占用全部这些阵列通道的印制电路板 (PCB) ,重点是在模拟前端 IC 中集成尽可能多的通道。总系统功耗是手持式系统的另一个重要性能指标。直接将接收端电子器件集成到了探针中是创新的另一个方面。

这样做有助于缩短探针中低压模拟信号源与LNAs之间的距离,从而减少信号的损耗。集成会进一步增加探针件数目,从而增强3D成像。除了这些模拟信号链考虑因素以外,高性能、低功耗嵌入式处理器还能够比以前更快速、高效地完成便携式设备的波束生成和图像处理任务。 
MRI

如欲了解典型MRI通道模拟信号处理链的例子,请参见图3。

图 3 MRI系统结构图示例

全身MRI系统可能有一个多达76个元件或通道的线圈矩阵。另外,低压 (LV) 模拟输入沿长同轴线缆从肢体线圈传输至模拟信号链前置放大器。当谈到MRI接收信号链时,两个关键随之出现:如何获得高信噪比 (SNR)(至少约84dB或14位);如何实现总系统的极高总动态范围(至少 150 dB/Hz 左右)。获得高SNR要求一个超低噪声系数的高性能前置放大器。使用如动态增益调节或模拟输入压缩等创新方案可以达到高动态范围要求。

总之,通过增加MRI系统中所用线圈数,既可以获得更好的图像范围,也可以缩短图像扫描时间。线圈数的增加可能会要求对线圈和前置放大器之间的信号通信进一步优化,而使用高速数字或光链路时则要求主系统进一步优化。另外,高集成度会导致不同于目前的系统划分,这可能会将电子器件更靠近于线圈。就这点来说,可能要求半导体 IC 非磁性封装,并符合更加严格的功耗和面积规定。以上要求成功的实现能使输入信号衰减降低,从而获得更高品质的医学图像。

总结

数字成像是当今医学行业中最为活跃的技术开发领域之一。IC模拟/混合信号功能以及各种嵌入式处理所取得的巨大进步正不断推动其发展。这些技术的出现提高了成像系统的性能,同时也极大地提高了为患者提供诊断和医疗护理服务的质量。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2024 年 4 月 24 日,中国上海——数字成像雷达芯片技术头部企业 Uhnder 宣布推出全新成像雷达解决方案 S81。S81 是一款高度集成的单芯片解决方案,支持多达 96 个 MIMO 通道,且基于领先的数字编...

关键字: Uhnder 汽车 4D 数字成像 雷达芯片

此KWIK(Know-how With Integrated Knowledge——技术诀窍与综合知识)电路应用笔记提供了应对特定设计挑战的分步指南。本文将讨论与特定应用相关的要求,如何利用通用公式进行转换,以及如何轻松...

关键字: 高通滤波器 电磁流量计 信号链

ADC驱动器是数据采集信号链设计的关键构建模块。ADC驱动器用于执行许多关键功能,如输入信号幅度调整、单端至差分转换、消除共模偏移,并经常用于实现滤波。本技术诀窍与综合知识(KWIK)电路常见问题解答(FAQ)笔记讨论如...

关键字: ADC驱动器 信号链

本技术文章主要探讨信号链、电源管理和微控制器IC在一种实用的力检测产品——自行车功率计——中的应用。将说明自行车功率计运行的物理原理和电子设计。本文介绍的解决方案功耗非常低,能够精确放大低频小信号,并且成本低、体积小。

关键字: 信号链 电源管理 微控制器

从定速电机转向提供位置和电流反馈的变速电机,不仅可以实现工艺改进,还能节省大量能源。本文介绍了电机编码器(位置和速度)、器件类型和技术以及应用案例。此外还解答了一些关键问题,例如对特定系统最重要的编码器性能指标有哪些。本...

关键字: 编码器 电子器件 信号链

本文简要介绍了精密系统中的参考到输入(RTI)的计算和仿真,以及如何从中获得尽可能多的重要信息。在设计用于模拟测量的信号链时,必须考量信号链中不同组件导致的误差和噪声,用于确定最高性能。规格可以用百分比(分数)表示,或者...

关键字: 精密系统 RTI计算 信号链

本文介绍用于在低功耗信号链应用中实现优化能效比的精密低功耗信号链解决方案和技术。本文将介绍功耗调节、功率循环和占空比等用于进一步降低系统功耗的技术(不仅限于选择低功耗产品,这有时并不够)。还将探讨如何使用通道时序控制器、...

关键字: 低功耗 信号链 功率优化

北京2023年2月22日 /美通社/ -- 2023年2月17日,何梁何利基金2021和2022年度颁奖大会在北京钓鱼台国宾馆隆重举行,共计112名杰出科技工作者被授予"何梁何利基金科学与技术奖"。同...

关键字: BSP X射线 分布式 创新奖

DigiLens Inc.,国际上在头戴式智能眼镜设备上使用光波导技术的先驱和行业龙头,当日宣布与豪威集团,全球排名前列的先进数字成像、模拟、触屏和显示技术等半导体解决方案开发商开展合作,为新市场和新应用开发AR/VR/...

关键字: 智能眼镜 半导体 数字成像

涉及对真实世界进行敏感测量的应用都是从准确、精密的低噪声信号链开始。现代高度集成的数据采集器件通常可以直接连接到传感器输出,在单个硅器件上执行模拟信号调理、数字化和数字滤波,这极大地简化了系统电子组成。但是,要使这些现代...

关键字: Python 信号链 噪声
关闭
关闭