当前位置:首页 > 医疗电子 > 医疗电子
[导读] 对胸部进行一个小小的、及时的电击(如:用除颤器电击)可挽救心脏骤停(SCA)患者的生命。电击(3kV至5kV,50A)阻止心脏产生无用的扑动(颤动),这种扑动不能将血液输送至大脑和其它器官。这种电击让心脏重新有序地泵送血

 对胸部进行一个小小的、及时的电击(如:用除颤器电击)可挽救心脏骤停(SCA)患者的生命。电击(3kV至5kV,50A)阻止心脏产生无用的扑动(颤动),这种扑动不能将血液输送至大脑和其它器官。这种电击让心脏重新有序地泵送血液。在医院,心脏监测通常是用一台心电图(ECG)仪配一个独立的除颤器。当用除颤器进行拯救电击时,ECG 探头(如:电极)连接在患者身上。不用说,ECG必须承受这种电击并继续正常工作。

根据美国心脏协会(AHA)的数据,每年发生接近383,000起医院外的心脏骤停,其中88%心脏骤停发生在家中。不幸的是,在医院外发生心脏骤停的患者中,只有不到8%的人存活了下来。这些统计数字发人深省。在医学术语中,心力衰竭与SCA有很大不同。SCA没有征兆信号,人就这么倒下了。心力衰竭发生之前通常具有多种、比较明显的征兆。

如果没有起保护作用的皮肤,极小的电流也会损害患者心脏。在对电敏感的患者中,即使微量电流(10μA)也会引起室颤。要知道,使用ECG和独立除颤器时,将多种设备同时连接至患者的情况并不罕见。显而易见,总漏泄电流必须保持在能够危及人类心脏的门限以下。

除颤器和挽救生命的电击

许多人认为除颤器是重启心脏,但实际上是停止心脏工作。心脏中有一种称为纤颤的随机跳动,这意味着心脏工作不协调,不泵送血液。除颤器将心脏电击至不活动状态,允许重新开始正常窦性心律。

图1所示为医院用除颤器,训练有素的医护人员进行毫秒级的电击,挽救生命。为贯穿胸部并击中心脏,3kV至5kV电压和50A电流是必要的。要求高电压和电流的原因是因为人体中大约75%的成分是盐水,身体传导了大部分电流,将心脏旁路。

图1:带电极的医院用除颤器。注意,患者身上有外部心电图或心脏监护仪,从胸部的白色圆片(电极)和导联(线)可看出来。

第二种除颤器(图2)为自动体外除颤器(AED),设计供培训较少的公众使用。这些一次性电极片有两个目的:一是利用心电图监测心脏;二是 施加高压电击。

图2:胸部按压CPR(左图)迫使血液循环,为大脑及其它生命器官供血,直到AED重启心脏(右图)。

AED保护器的输入不受高压和电流冲击的损害,因为知道何时施加电击,因此能够,且确实能在电击期间断开ECG监护仪。然而,医院用除颤器往往与独立ECG或监护仪配合使用,后者的ECG或监护仪无法得到提前警告,必须要承受高压和高电流冲击。

ECG的除颤器保护

从图1可知,电压可能高达3kV至5 kV,电流高达50A。图3所示除颤器测试配置看起来非常像标准ESD测试配置,但有一个重要区别。ESD测试具有皮法级的电容,但除颤器测试配置的电容则有数微法。因此,来自于除颤器的多余的能量必须在ECG之前消散掉。

图3:除颤器测试配置(注意较大电容)。

图4:典型ECG前端除颤器保护电路。LA = 左臂;RA = 右臂;RL = 右腿。

图4所示为除颤器的典型ECG保护电路。为方便起见,我们标记了顶部左臂(LA)输入电路中的元件。正常ECG波形为毫伏数量级(0.5mV至7mV),但高压除颤器的数量级则为千伏,可持续5ms至20ms——这是个长时间对于承受如此高压的电子元件来说。大多数ECG前端使用诸如图2所示的氖辉光灯管进行保护,例如NE-2或NE-23 (I1和I2)。NE-23内部具有小放射点,提供光子,以稳定电离电压。氖辉光灯管的替代品是气体放电避雷器管或瞬态电压抑制器(TVS)。

电阻R1的范围为10kΩ至20kΩ,可安装在放大器内或内置到电缆,是串联元件用于限制氖光灯中电流。电阻R2和R3,与电容C1、C2和C3一起,形成低通滤波器。二极管D1将电压限制到较低电平。D1可为齐纳二极管或雪崩二极管、金属氧化物变阻器(MOV),或者晶闸管浪涌保护器。D1电容与C1一起是低通滤波器的一部分。电容C2为共模滤波器,而C3提供差分滤波。通常C3比C2大10倍左右。SW1为高压信号线保护器:检测高电压的开关,关断串联开关,打开箝位电路,降低放大器处的电压。SW1可用限流二极管代替,后者看起来像JFET,源极和漏极连接在一起。二极管D2和D3为ESD保护二极管,将放大器输入箝位至电源。注意放大器顶部的C4和齐纳二极管D6,其吸收和箝位正电源。C5和D7对负电源的作用相同。

“没有什么是完美无缺的。”这句话世代相传,我们在这里又用上了。该ECG除颤器保护电路的权衡取决于放大器的保护和ECG正确工作所必须的频率响应的好坏。保护装置的电容是保证正确心脏频率响应的关键。

重复的电击会造成除颤器输入装置性能下降。由于电击性能下降,以及除颤器的玻璃外壳破裂导致空气和水进入灯管,从而污染氖辉光灯管。所以,大多数制造商建议至少每年更换输入保护装置。在医院环境下,ECG和除颤器使用频繁,电击次数更多,性能下降甚至更快。

现在,我们必须考虑射频干扰(RFI)、静电放电(ESD)、电磁干扰(EMI)以及抗扰性(EMS)对该保护设计的影响。

图5:原理图,防止ESD、EMI、EMS和RFI等有害的电气现象的原理图。

图5中的装置分为三类:

1. 限压装置:气体放电控制器、金属氧化物变阻器、电压抑制器二极管、双向触发二极管,以及开关。

2. 限流装置:保险丝、断路器以及热熔断路器。

3. 上升时间减速器:电阻、电感、线圈、磁珠和电容,这些元件均减缓瞬态的上升时间,从而为其它保护装置预留动作时间。

电容与电阻配合使用,磁珠以及电感作为低通滤波器。这种方法控制数据转换器的抗混叠滤波。通过将冲击在时间上进行分散,从而放缓ESD上升时间,允许电容效率更高。每个电容的工作电压、等效串联电阻(ESR)以及自谐振频率点必须与应用的频率及带宽相匹配。自谐振频率点可能意味着需要多个较小电容并联,以吸收ESD的快速上升时间和除颤器电击脉冲。

每个网络都是相互的,他们在保护自身系统免受外部损害的同时,也避免器件有可能对外产生任何的意外的辐射信号。

所有这些器件都有助于ECG的保护电路。由于这将是一个复杂的系统,所以明智的做法是对其进行模拟。在这方面,有免费及低成本的计算和仿真工具可用。

终极目标是患者保护

有很多关于穿过心脏的安全电流水平的研究,医疗设备的标准发生过上下浮动,现在的安全水平据说是低于4μA至10μA。这使得医疗设备的设计是要求非常苛刻边缘设计。同时也要注意,多种设备同时连接至患者的情况并不罕见。所以,总漏泄电流必须保持在能够危及患者心脏的门限以下。

具体到现实中,除颤器设计者必须全面了解可能的电流输入保护方法,然后选择成本合理的最佳保护。必须始终保护患者,其中包括对医疗设备在使用期内进行正确检查和校准。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

改变可调电源的输出电阻可以改变电流输出,一般来说,输出电阻越小,电流输出越大。因此,可以在电路中增加一个并联的电阻或者减小电路中的电阻值来增大电流输出。

关键字: 可调电源 电流 并联

恒流源是一种电路元器件,它能够提供一个稳定的电流输出。在电路中,当需要一个稳定的电流时,就可以使用恒流源。与电压源不同的是,恒流源的输出电流是不受负载电阻的影响的。

关键字: 恒流源 高内阻 电流

直流电是指电流方向始终保持不变的电流。在实际应用中,我们经常需要调整直流电的电流大小,以满足不同的需求。本文将从多个方面详细阐述直流电如何调节电流。

关键字: 直流 电流 负载调节

可调电源是用于电路测试和实验的重要工具,其主要作用是控制负载的电压和电流。在实际应用中,有时候需要调节电流,这时候就需要了解可调电源调节电流的相关知识。

关键字: 可调电源 电流 负载

可调稳压电源是一种提供稳定的直流电压和电流的电源设备,其调节电流的方法主要有三种:恒流调节、恒压调节和恒功率调节。

关键字: 可调直流 稳压电源 电流

许多可调电源都配有电流调节旋钮,通过旋转电流调节旋钮,可以调节电源输出电流大小。需要注意的是,电流调节旋钮的旋转方向与具体电源不同,用户需要结合电源说明书或者尝试旋转来确定调节方向。

关键字: 可调电源 负载 电流

恒流源电路作为电子技术中的一个重要组成部分,其稳定性和可靠性对电路的性能和设备的运行具有至关重要的作用。随着科技的不断发展,恒流源电路的形式和应用领域也在不断拓展和深化。本文将详细探讨恒流源电路的几种主要形式及其主要应用...

关键字: 恒流源电路 电子技术 晶体管

整流桥的外观可以直接反映其制造质量和装配工艺。一般来说,整流桥的外观应该平整光滑,没有明显的划痕、破损或者氧化。首先要将整流桥从设备中取下来,然后进行以下检测。

关键字: 整流桥 示波器 电流

随着电子技术的飞速发展和智能设备的广泛应用,芯片作为现代电子系统的核心组件,其重要性日益凸显。COF(Chip On Film)载带芯片作为一种先进的封装技术,以其独特的优势在集成电路领域占据了一席之地。本文将对COF载...

关键字: 电子技术 芯片 COF载带芯片

电流是电学中的基本概念之一,对于理解电路的工作原理和电子设备的运行机制具有重要意义。本文将对电流的定义、性质、单位、测量方法以及在实际应用中的作用进行详细介绍,旨在帮助读者全面理解电流的概念和重要性。

关键字: 电流 电子设备 电荷
关闭
关闭