当前位置:首页 > 显示光电 > 显示光电
[导读]摘要: 本文介绍了以TMS34020图形处理器为核心的显示处理模块的设计方法,给出了该图形处理模块的硬件设计和软件设计。关键词: 显示处理;TMS34020;软件设计引言信息处理技术的发展对显示处理设备提出越来越高的要

摘要: 本文介绍了以TMS34020图形处理器为核心的显示处理模块的设计方法,给出了该图形处理模块的硬件设计和软件设计。

关键词: 显示处理;TMS34020;软件设计

引言

信息处理技术的发展对显示处理设备提出越来越高的要求,目前的显示器和图形适配器(又称图形卡或显卡)大多可支持1280×1024的高分辨率显示模式。但是,这些高分辨率的显示处理系统主要是面向传统的桌面显示,不能满足专业或某些尖端技术领域的要求。我们研制出的基于TMS34020的图形显示处理模块,支持通用的1280×1024高分辨率显示模式,并提供了专用软件开发环境,可满足不同专业显示领域的应用。

显示处理模块体系结构

图形显示处理模块的体系结构见图1。该显示处理模块主要由图形系统处理器(GSP)、可编程存储器(EPROM)、动态存储器(DRAM)、帧缓存器(由VRAM 组成) 及带彩色查找表的视频数模转换部件(RAMDAC)等部分组成。

GSP采用TMS34020芯片,它是图形显示处理模块的核心器件,负责系统管理,程序存储器中读取指令和数据,在显示存储器中画图,控制动态存储器的刷新和显示图形的屏幕刷新,本板的串口通讯、局部总线的管理以及与PC主机的交互。GSP提供了主机接口I/O寄存器,对主机的访问进行地址译码,并缓存数据。主机通过该接口装载GSP的程序或读写GSP局部存储器的数据。1MB的EPROM存储器用于存储中断向量、初始化程序、基本的图形函数、字符和图符。4MB的DRAM组成的系统存储器用于存放程序和数据,同时也有一部分用作系统堆栈和图形暂存区。以满足大幅漫游、多幅动画等特殊功能的要求。2MB的VRAM用于存放图形数据。RAMDAC将顺序送来的数据进行D/A转换后输出视频模拟信号。因VRAM 串行口数据流输出速度远低于RAMDAC的数据流输入速度,故要在VRAM 与RAMDAC间设有并/串转换电路,将慢速的数据流转换成高速的数据流,再输入到RAMDAC。

接口电路


 

存储空间的分配

图形显示处理模块配置1MB的EPROM,4MB的DRAM和2MB的VRAM均处于局部存储空间,可映射到主机存储空间。其地址分配见图3, 灰色为保留空间。

VRAM作为显示存储器既提供作图区,又为屏幕刷新提供服务。VRAM是在普通DRAM上增加了SRAM移位寄存器和一个串口。图形处理器作图处理(如画图、存图、取图)时通过DRAM的随机口作存取操作,与此同时,像素数据不断通过SRAM移位寄存器和串口输出作显示刷新用。因而,采用VRAM作帧存,除了从DRAM到SRAM的传送周期外的所有时间(超过99%)都可用作图形处理。

视频输出

视频输出电路由并/串转换电路和RAMDAC 组成。其中,并/串转换电路核心芯片为BT438,将低速的VRAM像素数据流转换为高速的数据流。由于绝大部分高分辨率显示器只接受模拟视频信号输入,所以这两者之间需要一个数模转换器(DAC)。图形显示处理模块上用的BT459就是配色表和DAC的组合元件(RAMDAC)。它是在DAC前加配色表使得图形显示彩色的范围更广,且改变显示颜色更灵活。同时,BT459还支持位面屏蔽和闪烁、硬件光标等功能。使输出的视频能满足更广泛领域的应用。

软件设计

图形显示处理模块支持用户在两个层次编写应用程序。一是在底层编写程序,直接应用TMS34020工具(包括TMS34020汇编、TMS34020 C编译软件、TMS34020图形函数库和数学函数库)编写装载到GSP局部存储器的应用程序;二是在上层编写程序,编程者只需编写主机运行的应用程序,而不必用TMS34020程序设计语言编写程序。

图形显示处理模块开发了通用的TMS34020底层函数库,其中包括汉字串(字符串)显示、画点、直线、椭圆、多边形、椭圆填充、多边形填充、位图扩展、图形块复制、图形块放大或缩小等功能函数。用户可直接应用这些函数,在上层编写程序,缩短软件开发周期。对有特殊应用的领域,可直接编写TMS34020的图形函数和数学函数,以满足专业领域的需求。

结语

图形显示模块是一种功能较强和非常实用的高分辨率图形处理模块。整个模块的硬件设计在一块电路板上,形成一个图形卡。它具有图形产生、处理与缓存,屏幕刷新时序的控制及象素信息的D/A转换等功能。它支持分辨率高达1280×1024象素的图形图像显示。其系统软件提供了丰富的图形功能函数,可实时输入和显示汉字,进行多种二维图形和三维图形处理。并且支持用户在GSP和PC微机两种环境中编写应用程序以适应不同层次的应用需求,能很好的满足尖端技术领域在高分辨率显示下的程序设计要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭