当前位置:首页 > 通信技术 > 通信技术
[导读] 1 NFC 智能电视的系统结构和总体设计方案本文设计采用了德州仪器 的TRF7970A transceiver IC 作为电视机端,RF430CL330H NFCTag 应用在遥控器端;在本系统中, 其基本功能应用如下:·TRF7970A 可以通过和RF4

 1 NFC 智能电视的系统结构和总体设计方案

本文设计采用了德州仪器 的TRF7970A transceiver IC 作为电视机端,RF430CL330H NFCTag 应用在遥控器端;在本系统中, 其基本功能应用如下:

·TRF7970A 可以通过和RF430CL330H 的相互通信,实现电视和遥控器之间的配对,也就是目前2.4GHz 数据传输前的配对;

·TRF7970A 可以和NFC 智能手机实现WiFi 的快速配对;

· RF430CL330H 可以和智能手机之间的通信,实现手机的数据信息转换到遥控器或者电视上面;

·可以通过NFC 的空中接口对Firmware 的软件升级;

·TRF7970A 可以对标签的读写操作,实现电视的功能项选择;

图1 系统结构框图

TRF7970A 满足NFC 的三种功能通信方式:Reader/Write, Pear to Pear 和Card Emulaiton,完全满足ISO/IEC18092, ISO/IEC21481 的NFC 标准;可以完全与满足NFC 标准的设备端进行信息的交互,RF430CL330H 是一款动态的NFC Tag 芯片, 符合NFC Type 4 的标准,支持的数据速率可达848Kbps, SPI 接口可以MCU 进行有效的沟通。

2 硬件电路设计

2.1 TRF7970A 模块硬件电路设计

TRF7970A 是一款13.56MHz RFID 高集成度的射频前端芯片,完全支持NFC 的协议标准,通过对该芯片的ISO Control 寄存器进行配置,可以设置成为不同模式的工作状态;TRF7970A 支持SPI 和并口两种通讯接口模式,宽电压(2.7V~5.5V)供电,内部集成了LDO,支持5 种电源管理模式,在5V 供电的情况下输出功率可达200mW。接收回路有两路(RX1和RX2 ),相位相差90 度,保证接收的稳定和可靠性,其基本的硬件电路如下图所示:

图2 TRF7970A 射频前端电路

射频前端匹配到50 欧姆的射频阻抗,基本的匹配网络如下所示:

图3 TRF7970A 射频前端匹配网

2.2 TRF7970A 天线匹配电路构建

TRF7970A 天线是一款50 欧姆的阻抗匹配天线,其基本的匹配电路如下所示:

图4 TRF7970A 天线匹配电路

由于天线的材质和尺寸大小不一样,每一款生产出来的TRF7970A 天线匹配电路天线都要做完整的天线匹配,根据设计的系统Q 值,天线的电感值来对射频前端的参数进行完整的匹配。

2.3 RF430CL330H 模块硬件电路设计

RF430CL330H 是一款满足NFC Type 4 的动态标签,支持ISO/IEC14443 Type B, 支持SPI和I2C 接口,有RF 唤醒功能的一款动态标签;其基本的硬件电路如下:

图5 RF430CL330H 基本参考电路

从该原理图可以看出,外面很少的外围器件就可以集成到别的芯片外围电路上去,以实现快速的 NFC 功能。在该遥控器项目中,RF430CL330H 及外围电路集成到遥控器的电路上,只是把线圈拿出来作为一个独立的模块,这样便于读写操作。

3 系统软件设计

系统软件设计主要包括智能电视应用中的各项功能的实现:有对TAG 的读取以获取特定电视或者网络节目的权限,有对蓝牙配对WIFI 配对的需求实现快速建立蓝牙与WIFI 的连接,另外电视可以通过P2P 功能获取手机相关图片,链接信息,实现信息的快速切换。也可以通过NFC 对Firmware 进行无线升级。

3.1 标签读取

TRF7970A 可支持ISO15693,ISO14443A/B 等标签的读取(如图6 所示)。

图6 TRF7970A 支持的卡片标准 3.2 蓝牙配对

根据NFC 论坛与蓝牙SIG 联盟定义的安全简易配对Bluetooth secure simple paring usingNFC(NFCForum-AD-BTSSP)规范,将蓝牙配对信息(如下数组)通过MCU 写RF430CL330H 的NDEF 区域,当任何具有NFC 功能的设备,读取到该内容后将自动进行蓝牙配对的连接过程。

蓝牙的OOB 数据格式如图7 所示。包括OOB 数据长度,蓝牙设备地址与名称,设备种类以及UUID。

图 7 NDEF 中的蓝牙OOB 数据格式

蓝牙的NDEF 写入信息数据结构如下:

Unsigned char NDEF_ApplicaTIon_Data[] =

{

//NDEF Tag ApplicaTIon Name

0xD2, 0x76, 0x00, 0x00, 0x85, 0x01, 0x01,

//Capability Container ID

0xE1, 0x03,

//Capability Container

0x00, 0x0F, //CCLEN

0x20, //Mapping version 2.0

0x00, 0x3B, //MLe (49 bytes); Maximum R-APDU data size

0x00, 0x34, //MLc (52 bytes); Maximum C-APDU data size

0x04, //Tag, File Control TLV (4 = NDEF file)

0x06, //Length, File Control TLV (6 = 6 bytes of data for this tag)

0xE1, 0x04, //File IdenTIfier

0x0C, 0x02, //Max NDEF size (3072 bytes)

0x00, //NDEF file read access condiTIon, read access without any security

0x00, //NDEF file write access condiTIon; write access without any security

//NDEF File ID

0xE1, 0x04,

0x00, 0x44, //NLEN; NDEF length (68 byte long message)

0xD2, //MB=1b, ME=1b, CF=0b, SR=1b, IL=0b, TNF=010b

0x20, //Record Type Length: 32 octets

0x21, //payload length: 33 octets;

0x61, 0x70, 0x70, 0x6C, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x2F, 0x76,

0x6E, 0x64, 0x2E, 0x62, 0x6C, 0x75, 0x65, 0x74, 0x6F, 0x6F, 0x74, 0x68, 0x2E,

0x65, 0x70, 0x2E, 0x6F, 0x6F, 0x62, //Record Type Name: applicaTIon/vnd.blue

//tooth.ep.oob

0x21, 0x00, //OOB opTIonal data length: 33 octets

0x06, 0x05, 0x04, 0x03, 0x02, 0x01, //bluetooth device address:

//01:02:03:04:05:06 (example address only)

0x0D, //EIR Data Length: 13 octets

0x09, //EIR Data Type: Complete Local Name

0x48, 0x65, 0x61, 0x64, 0x53, 0x65, 0x74, 0x20, 0x4E, 0x61,0x6D, 0x65, //

//Bluetooth Local Name: HeadSet Name

0x04, //EIR Data Length: 4 octets

0x0D, //EIR Data Type: Class of device

0x04, 0x04, 0x20, //Class of Device: 0x20:Service Class=

//Audio, 0x04:Major Device Class=Audio/Video, 0x04: Minor Device Class=Wearable //Headset Device

0x05, //EIR Data Length: 5 octets

0x03, //EIR Data type: 16-bit Service Class UUID list (complete)

0x1E, 0x11, 0x0B, 0x11 //16-bit Service Class UUID list (complete) ;0x111E –

//HFP-HF, 0x011B ?A2DP-SNK

};

3.3 Peer to Peer

P2P 是基于NFC 论坛定义的Simple NDEF Exchange Protocol(NFCForum-TS-SNEP)规范,其主要流程如下。手机可以通过P2P 的功能将相关的信息例如图片,链接等与电视进行快速交互。

图8 P2P 的软件操作流程

在P2P 中设备分为主动模式IniTIator 和被动模式Target。TRF7970A 既可以作为IniTIator 也可以作为Target。相对来说Target 模式下能够有效节约功耗。

1. 主动模式:设备本身会产生RF 电磁场

2. 被动模式:设备使用感应的电磁场进行数据传输

图9 P2P 的工作模式

3.4 Firmware Update

将MCU 的BSL 功能与NFC 的技术互相结合,通过P2P 的方式实现软件升级。以德州仪器 的MSP430 为例,BSL 的软件主要包括Peripheral Interface(PI),Command Interface 以及BSL_API。BSL 的软件升级接口可以通过UART,SPI,那么将NFC 的接口与SPI 结合即可实现通过NFC 对软件的升级。如图10 所示。

图10 BSL 软件升级方式

其中NFC 的PI 主要包括三层:SPI 驱动,RFID 硬件接口(与TRF7970A 的接口)以及NFC(NFC 协议的实现,P2P)功能。

图11 NFC PI 结构

4 总结

随着NFC 近场通信功能的不断普及,以其传输速率快,安全性高等特点,在不同的领域都有着广泛的应用。尤其在授权,支付,蓝牙以及WIFI 配对方面有着突出的优势,将NFC 的应用引入智能电视,使得信息分享,通信连接更加方便快捷,将能够极大提升用户体验。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭