当前位置:首页 > 测试测量 > 测试测量
[导读]引言  测试CMOS电路的方法有很多种,测试逻辑故障的一般方法是采用逻辑响应测试,即通常所说的功能测试。功能测试可诊断出逻辑错误,但不能检查出晶体管常开故障、晶体管常闭故障、晶体管栅氧化层短路,互连桥短路

引言

  测试CMOS电路的方法有很多种,测试逻辑故障的一般方法是采用逻辑响应测试,即通常所说的功能测试。功能测试可诊断出逻辑错误,但不能检查出晶体管常开故障、晶体管常闭故障、晶体管栅氧化层短路,互连桥短路等物理缺陷引发的故障,这些缺陷并不会立即影响电路的逻辑功能,通常要在器件工作一段时间后才会影响其逻辑功能。

  功能测试是基于逻辑电平的故障检测,通过测量原始输出的电压来确定逻辑电平,因此功能测试实际上是电压测试。电压测试对于检测固定型故障,特别是双极型工艺中的固定型故障是有效的,但对于检测CMOS工艺中的其他类型故障则显得有些不足,而这些故障类型在CMOS电路测试中却是常见的。对于较大规模电路,电压测试测试集的生成相当复杂且较长,需要大量的实验数据样本。

  IDDQ测试是对功能测试的补充。通过测试静态电流IDDQ可检测出电路中的物理缺陷所引发的故障。

  IDDQ测试还可以检测出那些尚未引起逻辑错误,但在电路初期会转换成逻辑错误的缺陷。本文所设计的IDDQ电流测试电路对CMOS被测电路进行检测,通过观察测试电路输出的高低电平可知被测电路是否有物理缺陷。测试电路的核心是电流差分放大电路,其输出一个与被测电路IDDQ电流成正比的输出。测试电路串联在被测电路与地之间,以检测异常的IDDQ电流。

  1  IDDQ测试原理

  电流IDDQ是指当CMOS集成电路中的所有管子都处于静止状态时的电源总电流。对于中小规模集成电路,正常状态时无故障的电源总电流为微安数量级;当电路出现桥接或栅源短接等故障时,会在静态CMOS电路中形成一条从正电源到地的低阻通路,会导致电源总电流超过毫安数量级。所以静态电源电流IDDQ测试原理是:无故障CMOS电路在静态条件下的漏电流非常小,而故障条件下漏电流变得非常大,可以设定一个阈值作为电路有无故障的判据。

  CMOS集成电路不论其形式和功能如何,都可以用一个反向器的模型来表示。IDDQ测试电路框图如图1所示,电路IDDQ检测结果为一数字输出(高低电平)。测试电路中电流差分放大电路的输出与被测电路的IDDQ成正比。测试电路串联在电源、被测电路与地中间,以检测异常的IDDQ电流。为了实现测试,需要增加两个控制端和一个输出端。

 2  测试电路设计

  2.1电路设计

  图2所示为CMOS测试电路,其由1个电流差分放大电路(T2,T3)、2个镜像电流源(T1,T2和T3,T4)和1个反相器(T7,T8)组成。镜像电流源(T1,T2)用来产生一个参考电流IREF,电流源(T3,T4)的电流为(IDDQ-IREF),其作用相当于一个电流比较器。IDDQ是被测电路的电源电流。差分放大电路(T2,T3)计算出参考电流与被测电路异常电流IDDQ的差。参考电流IREF的值设为被测电路正常工作时的静态电源电流,其取值可通过统计分析求出。

 

图2测试电路

  2.2工作模式

  测试电路工作于两种模式:正常工作模式和测试模式。电路使能端E作为管子T0的输入,用来控制测试电路与被测电路的连接和断开,即测试电路的工作模式。

  在正常工作模式下(E=1),T0导通,IDDQ经T0管到地,测试电路与被测电路断开,被测电路不会受到测试电路的影响。

  在测试模式下(E=0),T0管截止,被测电路的静态电流IDDQ与参考电流IREF比较,如果静态电流比参考电流大,则电流差分放大电路计算出差值,反向器的输出即测试输出为高电平(逻辑1),表明被测电路存在缺陷。若静态电流比参考电流小,反向器输出即测试输出为低电平(逻辑0),表明被测电路无缺陷。

  2.3不足与改进

  因为测试电路加在被测电路与地之间,所以会导致被测电路的性能有所下降。为了消除这种影响,另外加上控制端X。在正常工作模式情况下,X端接地,测试电路与被测电路分离,测试电路对被测电路无任何影响。在测试模式下,X端悬空,E端接地,T0管截止,测试电路进行测试。

  在测试模式下,X端悬空,E端接低电平,若电路有缺陷,测试输出为高电平。但是被测电路输入跳变时,被测电路无缺陷,也会产生一较大的动态峰值电流IDDQ。为了避免出现误判断,在此种情况下,测试电路应输出为低电平。所以在被测试电路输入变化后,必须在瞬态电流达到稳定时才可进行IDDQ测试。

  3  结语

  本文所设计的IDDQ测试电路由一个电流差分放大电路、电流源、反相器组成。在正常工作模式下,测试电路与被测电路断开;在测试模式下,电流差分放大电路计算出被测电路电流与参考电流的差,反相器输出是否有缺陷的高低电平信号。测试电路用了7个管子和1个反相器,占用面积小,用PSpice进行了晶体管级模拟,结果证明了其有效性。IDDQ测试的缺点是随着特征尺寸的缩小,每个晶体管阈值漏电流的增加,电路设计中门数的增加,电路总的泄漏电流也在增加,这样分辨间距会大大缩小,当出再重叠时就很难进行有效的故障检测和隔离。

  但尽管如此,由于IDDQ测试电路的简易性非常突出,所以它仍然是目前可测性测试技术的研究热点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭