当前位置:首页 > 测试测量 > 测试测量
[导读]测试技术是贯穿于产品全寿命周期各阶段的唯一的一项工程技术,测试的核心技术又是 软件,是实现货架产品(Commercial Off-The-Shelf,COTS)的关键。自动测试设备(Automatic Test Equipment)的软件平台应以 “互

测试技术是贯穿于产品全寿命周期各阶段的唯一的一项工程技术,测试的核心技术又是 软件,是实现货架产品(Commercial Off-The-Shelf,COTS)的关键。自动测试设备(Automatic Test Equipment)的软件平台应以 “互连、互通、互操作”原则作为基本要求,实现测试和诊断信息的融合和共享。

虚拟仪器测试环境 (Visual Instrument Test Environment, VITE)是支持IEEE 1226广域测试环境(A Broad –Based Environment for Test)标准的开放式通用测试软件平台产品,它采用软总线(对象总线)的结构形式,利用对象模型驱动的原理,在各个对象模型组件之间,以及组件的使用者 和提供者之间,建立透明的通信通道。其目的是实现自动测试系统测试程序集(Test Program Set)开发与硬件平台无关性,体现系统设计的方便性、灵活性、安全性和先进性。在软件信息模型的设计上,强调系统重构或重组,能够根据被测对象或测试流 程的不同而动态地进行重组,降低系统重组的费用。

一、VITE标准体系结构分析

虚拟仪器测试环境VITE采用开放式的对象模型驱动结构(Model Driven Architecture),全面支持产品测试领域的各种软件接口标准,以实现软件组件的可移植性、可重用性、互换性、互操作性。标准体系见图1。   

图1 虚拟仪器测试环境标准框架

在整个标准体系中,根据产品测试的特征,划分为两个层次的框架,即信息框架和系统框架,所有相关的组件标准以即插即用的功能模块形式挂在框架软总线上。

产品测试过程中的各种信息处理围绕着信息框架展开,分别包括测试需求建模数据、测试程序文档、机内测试数据、诊断和维护数据、仪器资源数据和数据交换格 式数据等。其关键是IEEE 1226标准中定义的核心测试信息模型(Core Test Information Model),充分描述了测试、测试说明、测试需求和其它的广域测试领域的信息实体。各个组件标准都是基于CTIM的,并根据各自的特点完成对CTIM的 扩展,从而将其定制到不同应用领域。

具体的测试实现则围绕着系统框架展开,包括各种的资源管理服务、运行时服务、仪器驱动、诊断处理服务等。

系统框架负责向信息框架提供信息来源,是信息的提供者。而信息框架根据产品测试要求,向系统框架发出信息采集命令,并接收和处理信息。

所谓框架实质上是为简化特殊应用领域的应用开发和系统管理而设计的软件环境。从另外一个视角看这个标准框架,框架在软件层次中是一种中间件,它位于操作 系统之上,具体的测试应用之下。图2显示了ABBET测试基本框架(Test Foundation Framework)中的标准的综合集。

图2 ABBET测试基础标准框架

标准化框架允许测试应用和工具能够在实现于ABBET框架服务之上的异构平台中得到支持。这些标准围绕表示测试主体、测试资源和测试环境的三个轴进行组织。

图中水平轴所表示的测试主体标准支持测试主体信息的获取和重用。测试主体信息捕获对测试主体设计和测试需求的说明,这些说明可以避免在初期开发、维护和测试应用的重驻过程中进行二次开发。测试主体信息也包括诊断知识,可在测试过程中被访问。

垂直轴所表示的测试资源标准应用于测试资源和信息。测试资源控制标准支持对仪器配置和数据获取等系统服务的访问。测试资源信息标准支持对测试应用资源需求和测试仪器能力进行规范。这些标准支持调整测试应用,以适应测试设备配置的修改。

斜轴所表示的环境相关标准,支持测试应用在异构测试环境之间的互换和重驻。测试信息以一种中立的、与具体实现无关的格式进行交换,这种格式对于数据导入、导出服务很适合。

二、VITE实现体系结构

开放式虚拟仪器测试环境的体系结构中包含了多种标准的开放式软件接口关系。软件功能模块通过这些接口实现信息交换,这些带有标准接口的功能模块组成了测试基础框架。

VITE的实现以面向对象的组件为基础,按照信息框架和系统框架的原则,设计实现了若干个功能组件。具体结构见图3。

图3 VITE组成结构

组件是一种定义良好的独立可重用的二进制代码,它可以是一些功能模块、被封装的对象类、软件框架、软件系统模型等。目前基于对象的组件软件体系结构中的“组件”是指可方便地插入到语言、工具、操作系统、网络软件系统中的二进制形式的代码和数据。

软总线又叫对象总线或ORB(对象请求代理),其目的是为组件间或组件使用者与组件提供者之间提供透明的通信通道。图中的应用执行、诊断显示、测试系统等组件就是挂接在软总线上的“软件集成电路(IC)”。

软总线是联结应用程序、各种对象、服务、对象工具集的核心,能够把各个组件对象元素有序地分割开来,用以实现分布式的软件集成和应用上的即插即用。它包 括两个两个层次的关系:1).对象方法、服务的“定义” 与它们的“实现”之间的关系。通过接口定义语言 OMG IDL 我们可以获得规范、通用的对象方法、服务定义。借助软总线,这些定义可以在任何编程语言、代码模块中真正实现,这种分割有助于进行具体软件编码互换,编程 语言互换以及版本互换。2).请求“客户”与响应“服务器”之间的关系。客户对其它对象方法、服务的请求并不直接传递给被请求服务器,而是转交给软总线, 由总线监察服务器的位置、状态,并决定服务绑定的方式,这种关系有助于对分布式对象进行跨平台、跨协议的逻辑集成。

这两种关系能够保 证组件通过总线进行通信,解决组件之间的互操作问题。每个组件通过组件通信单元(也称适配器)与总线连接,适配器组件解决互不相识的组件之间的互操作和数 据交换问题。从适配器送往总线的数据组件对象能被任一其它适配器自动识别,而且数据组件对象安装期间可由安装人员进行适当的调整从而改变服务组件的功能和 结构,以适应新的要求。用户界面组件提供表示服务,服务组件提供功能服务。

结合第2节描述的VITE标准体系结构划分和测试主体、测试资源、测试环境三者之间的关系,整个VITE的实现分为五个概念层。

第1层为测试信息层,主要对被测产品进行描述,以取得产品设计和维护试验的有关信息,以及其测试的特殊需求。图3中的模型编辑组件主要完成这一层的功能。

第2层为测试需求和策略层,提供UUT(被测件)的测试需求、测试模式和诊断知识的标准信息实体,其目的是产生高效的测试程序和可靠的数据。图3中的应用执行组件、诊断引擎组件、数据库引擎组件等主要完成这一层的功能。

第3层为用户应用程序层,主要用于帮助开发TPS程序,定义了与测试执行对应的操作接口,测试执行包括测试选择、测试顺序选择、诊断交互、访问用户接口部件以及访问数据日志和文件操作。图3中的应用执行组件、诊断显示组件等主要完成这一层的功能。

第4层为测试资源管理层,提供了用于全面管理测试系统资源的基本接口,支持在某一特定ATE条件下执行独立的ATE测试的能力,其目的是允许不同厂商制造的仪器和不同种类的仪器可用于同一测试程序以完成各自的功能。图3中的COTS测试语言组件主要完成这一层的功能。

第5层为仪器驱动(控制)层。该层主要提供了ATE可利用的各类总线标准和仪器接口,如IEEE488、SCPI、VISA、IVI等等。图3中的COTS仪器驱动组件主要完成这一层的功能。

三、VITE核心信息模型结构

VITE的信息框架的基本信息模型是基于核心信息模型结构CTIM的,其目标是描述一个或多个产品的测试,提供在不同系统间交换测试信息的途径。其描述可以是与测试器无关的,这样可以支持不同平台和环境之间的测试重用。

核心测试信息模型是一种描述测试行为的信息模型,它必须具有下面的功能特征:

a) 描述预期的产品行为特性

b) 定义测试需求

c) 定义资源能力和需求

d) 定义测试策略的行为

e) 引导系统诊断

CTIM模型中有五个实体:

a)位置(Location):位置捕获事件发生的地点。在当前模型中位置没有被进一步定义,在将来与产品信息的绑定中会进一步定义。

b)行为(Behavior):行为捕获事件发生的时间。用来标识事件发生的时间间隔,由其开始(start)和结束(stop)属性定义。

c)信号(Signal):信号捕获发生的事件。信号的类型包括面向信号的符号、以及其它的标准编程类型(比如整数、实数或布尔类型)。

d)约束(Constraint):约束定义了约束或限制信号取值范围的规则。

e)时间(Time):模型中的时间只是用来支持行为实体的定义。它是变量(variable,下面将定义)实体的子类,用来定义行为实体的开始(start)和结束(stop)属性的类型。

图4  VITE的核心测试信息模型

本文上节所述的各个信息组件都是基于CTIM的,或者是对CTIM的扩展。所有组件能够在CTIM的基础上补充了进一步的细节,从而将其定制到不同测试应用领域。

四、可互换虚拟仪器IVI模型

在系统框架的引导下,VITE的仪器驱动按照标准体系的要求,采用IVI(Interchangeable Virtual Instruments)模型。IVI模型是IVI基金会在VPP(VXI Plug&Play)技术基础上制定的一种驱动器设计标准。它通过定义类驱动器和专用驱动器实现了部分通用仪器之间的互换,缩短了程序的开发时 间,提高了系统的运行性能。

IVI标准的目的是允许用户把标准的IVI组件集成到不同的软件、硬件系统中。它支持各种接口,包括 GPIB、VXI、PXI、Serial、USB、Ethernet、Firewire和PC plug-in等,允许同类仪器(可带不同接口)互换。该技术的采用能够支持仪器互换,降低系统成本,改进系统运行性能和配置能力。

IVI模型采用了IVI-COM通信引擎的专用组件,能够保证仪器的动态互换。应用程序调用IVI的逻辑名,由引擎负责与配置库的逻辑名进行匹配,连接实际的物理仪器。

因此,在广泛收集测试系统的具体应用需求的信息下,遵循IVI标准,总结各类通用测试仪器的使用情况,以面向对象的实现方法,建立各种IVI仪器类,封 装仪器的属性、方法和事件,并能够继承和重构。实现不用修改测试程序的测试仪器的更换。只要测试仪器的功能相同就可以实现不用修改测试程序的测试仪器的互 换。

虚拟仪器测试环境的软总线体系结构融合了测试工程项目管理要素(维修性论证、测试需求分析、诊断能力分配与设计、系统综合与试验、测试能力成熟 度等)、嵌入式测试要素(BIT/BITE)、外部测试要素(维修等级、自动测试设备、测试程序集、人员培训、数据库、技术信息收集与分析、后勤技术保 障)等一系列标准。在VITE平台的建设上,充分保证了:一是以测试需求分析为基础,二是贯彻综合诊断信息支持系统(IDSS)的思想,三是严格执行标准 化程序,遵循和采用相关的国际和国家标准。这样的思路和方法使得我们在构造通用测试平台时获益匪浅。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭