当前位置:首页 > 测试测量 > 测试测量
[导读]前言近年来,数据的大规模传输要求变得越来越普及。担任这些大量数据处理芯片的标准接口(Interface)基本上都采用的是高速差分串行传输方式。高速串行数据传送方式有以下的一些特征:● 数Gbps的传送数率● 由于是高速

前言

近年来,数据的大规模传输要求变得越来越普及。担任这些大量数据处理芯片的标准接口(Interface)基本上都采用的是高速差分串行传输方式。

高速串行数据传送方式有以下的一些特征:

● 数Gbps的传送数率

● 由于是高速传送,信号振幅较小,为数百mV程度

● 小振幅的信号传送时,为了减小噪声的影响,都采用的是差分传送方式

● 对各信号通道间的相位同步没有严格要求

近年来对芯片的高速数据处理的要求,使得许多芯片内部都已经搭载了高速IF的功能。但是,也正是由于它的高速性能造成芯片的测试变得非常的困难。对这类高速IF芯片的初期评价阶段,一般采用的是多种计测器的综合评价。但是针对多管脚的高速IF芯片,单纯利用计测器的测定,会面对许多问题。

T6683+5G Option

为了实现精确的高速差分串行信号测试,我们开发了可以对应最大5Gbps差分信号的ATE用高速测试选件。这次开发的可以提供最大5Gbps的高速专用PE(图1),内藏于ATE系统中,其包括:64个高速输入专用通道+ 64个高速输出专用通道的Dr.

ter Reduce电路的嵌入也可以使得高速部的向量(Pattern)发生尽可能的不受到低速部的Jitter误差的影响。

从PE到被测芯片(DUT)的高速信号传送

在实际测试中,从ATE的Driver端到被测芯片(DUT)的信号传送过程,会遇到如图6-1所示的Pin-Relay、传输线路(同轴线)、接线端子、印刷线路等各影响高频信号衰减的问题。图6-2是一般的1GHz信号用线路的传输特性,当用它来传输更高频率的信号时,我们可以看到在2.5GHz开始就

会造成较大的衰减损失。这个衰减如果是超过10dB以上的话,是很难进行正确补偿的。因此为了减小在高频带的损失,我们对上述图6-1线路进行了以下4个项目的改进。

① Pin Relay & DC Relay

② 同轴线

③接线端子(Connecter)

④ 印刷线路

传输线路的改善

① Pinout Relay & DC Relay

安装在测试系统内部的信号输出/输入控制部的Relay本身的性能对最终的波形品质有较大的影响。现在普通使用的Photo-Mos Relay的最大信号带宽是1GHz左右,不能达到传送5GHz这样的高频信号的要求。因此,我们采用的是爱德万测试研制开发的,具有非常好带宽的小型MEMS Relay。

② 同轴线

为了传输这样的高频信号,和普通的同轴线相比,除了需要高精度的阻抗(Zo)特性以外,还应当具有低损耗、Zo值不受电缆弯曲变形,温度等外部影响的特性。为了实现Zo的高精度,(1)同轴线做成尽可能的保持圆心性。(2)最大限地提高同轴线各部分所用材料的尺寸精度、组装精度,保证实际Zo与计算值在最大.

传输脉冲信号时,表现为信号上升沿的变形及整体波形的非整合性。前沿的变形是由于我们知道脉冲信号中包含了全部的奇数高次谐波成分,在通过传输线路时由于高次谐波成分的衰减而造成的。由于一部分的非整合性的存在,在实际应用中会产生图形向量(Pattern)造成的时序错误(Timing error)。因此需要通过对其进行一定的补偿。图7所示为在线路中插入与其相反传输特性的pre-emphasis电路时的Jitter仿真结果,图8是实测波形。由于实测波形中含有一定的随机Jitter(Random Jitter)成分,虽然Jitter值有一定差异,但是我们同样可以确认到与仿真结果一样的Jitter改善效果。

芯片测试

利用这个5G高速选件(Option),我们对Redwood(5Gbps)、XDR内存、PCI-Express高速接口等进行了测试评价。

Redwo

od(5Gbps)

将5G选件自身的输出通道(Dr)与输入通道(Cp)对接起来对其进行性能评价,这个高速选件的信号输入比较部(Cp)本身虽然为了对应高速接口芯片测试,其结构为差分输入比较结构(differential),但是其也具有单端输入比较(Single-End)功能。虽然在实际的高速芯片测试中并不需要这种单端输入,但是在许多评价解析情况下存在对这种功能的要求,因此5G高速选件中加入了分别的单端输入正负单端(Pos/Neg)比较功能。

XDR

XDR是在目前的高速接口(IF)中唯一采用IO共通使用的接口标准。测试系统的输入输出通道(Dr/Cp)与芯片之间是一种被称为Fly-by的连接方式。控制采用的是本文前面所述的将差分的正负(Pos/Neg)固定电压值输出机能。

PCI-Express

PCI-Express的基本规格中对差分电压的中间点电压值有其特殊的要求。对应其规格要求,在对PCI-Express进行测试时,2个驱动通道(Dr)并列使用作为芯片的1个输入。

总结

针对高速差分信号的测试,爱德万测试基于高速SoC测试系统T6683开发了最大对应5Gbps的高速测试选件。通过这个系统,

1. 技术验证了现阶段各种具有代表性的高速接口芯片的测试可行性。

2. 开发成功了数Gbps以上测试所需的未来测试系统的基础要素技术及其实现方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭