当前位置:首页 > 测试测量 > 测试测量
[导读]在测试测量中测试精度一直是最为关心的问题。频率计作为高精度的频率和时间测试仪表,测试精度高于普通的频谱仪和示波器,所以测试精度的计算就更加为人关注。

在测试测量中测试精度一直是最为关心的问题。频率计作为高精度的频率和时间测试仪表,测试精度高于普通的频谱仪和示波器,所以测试精度的计算就更加为人关注。影响测试精度,或者说产生误差的因素很多,而其中最主要的因素是仪表内部时基稳定度、分辨率、触发精度及内部噪声等。频率计可以用来测试如频率、周期、相位、脉冲等,而其中频率和周期的测试占有绝大部分比例,本文主要讨论频率和周期的测试精度计算问题。

频率和周期的测试精度

频率和周期互为倒数,所以在频率计的测试中,频率和周期的误差计算方法是一样的。从测试误差的产生来说主要有两类,一类是随机误差,一类是系统误差。随机误差主要由于如噪声或者一些随机因素产生的误差,很难消除。系统误差主要是由于测试方法、仪表设置或者仪表性能引起的误差。不同的设备制造商都有自己的关于误差的计算方法,大同小异,本文论述泰克FCA3000系列频率计测试误差的计算方法。

总误差: (U tot)

rand uncert: 随机误差 syst uncert: 系统误差

在测试频率或者周期时,我们可以通过以下公式计算随机误差和系统误差:

随机误差的计算:

当测试时间 Measuring Time < 200ms 时:

当测试时间 Measuring Time > 200ms 时:

N = 800/Measuring Time (测试时间),同时 6 <= N <= 1000 并且 N < (Freq/2)*Measuring Time - 2

其中: Eq = 100 ps ( RMS) , Ess = Start Trigger Error

系统误差的计算:

 

其中 MR = Meas. Result ( Freq or Period ) , MR测试结果,可以是频率或者时间

MT = Mear. Time 测试时间

TBE = Time Base Error ( 时基误差 )

计算举例

我们可以通过一个具体的例子来计算测试的误差。我们假设以下参数:

l 使用泰克FCA3000 频率计

l 95% 置信区间

l 100MHz被测信号读数, 测试时间 1 秒

l 信号电平 5 V

l 时基经过校准后为 1.7 ppm

l 信号比较纯净,噪声(Vnoise-signal = 0)和 抖动 ( Ejitter = 0 )

首先计算随机误差

1、 通过公式(5)计算 Enoise= Vnoise/inp.sign.slew rate (v/s) at trig point

当被测信号是CW时inp.sign.slew rate (v/s) at trig point=2П(100MHz)*5V = 3.14*10 9

Enoise= Vnoise / inp.sign.slew rate (v/s) at trig point= 500uv/3.14*10 9=0.159 ps

2、 Start Trigger Error = Ess = Enoise, 代入公式 (3)

Urnd = [2.5* (100ps2 + 0.159ps2)1/2 / 1*8001/2 ]*100MHz = 8*10-4 Hz

计算系统误差,通过公式 (6)

Usys= {1/3*[ ( 1.7*10-6*100MHz ) 2 + [ (200ps / 1s ) * 100MHz ] 2]}1/2= 93Hz

计算总误差,通过公式 (1)

Utot = 2* [ ( Urnd 2 + Usys2 ) ]1/2 = 186Hz

结论

从计算的结果中我们可以看出,误差的来源主要是系统误差,而时基稳定度的提升可以大大提高测试精度。在计算中我们没有用到频率分辨率这个指标,因为测试时间的设置就决定了频率计的频率分辨率。在测试中我们假设被测信号是100MHz,如果是频率很低的信号,比如几十赫兹,那么频率分辨率会大大影响测试精度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克创新论坛衍生系列第二弹——创新实验室开放季:【测试为先 向新而行】,正式来袭!该系列以深耕新质生产力为核心,深度聚焦多个行业应用,走进客户以创新赋能,全面深入地探究各位在日常工作中的测试痛点,推动相关领域的创新与发展...

关键字: 测试测量

【与未来同行-是德科技创新技术峰会】重点聚焦于B5G/6G、Wi-Fi 7以及更多热门无线技术,深入审视自动驾驶、互联汽车、电动汽车充放电及网络安全等行业热点问题,共同探讨PCIe、DDR等当下高速互连领域的发展现状与挑...

关键字: 测试测量 电源技术

在本次采访中,高滨老师分享了自己团队最新的研究成果,并深入分析了在大模型中的潜在应用。此外,他还就器件的刻画和验证提出了发展性、建设性的意见。这对于从事忆阻器、类脑计算等领域的科研工作者来说,是一种不同的思路、一种先进的...

关键字: 测试测量

在电子设备中,电源的稳定性很重要,电源对纹波噪声的抑制能力也同样重要。用来描述对电源纹波噪声的抑制能力,通常用电源抑制比来表征,它是衡量电源供应的稳定性和对干扰的抑制能力的重要参数。是经常在电子放大器(特别是运算放大器)...

关键字: 测试测量

EA的电源技术,泰克领先的示波器、分析仪和信号源,再加上Keithley的源测量单元(SMU)和精密仪器,所有这些一起构成了极其精确、灵活和高效的电源技术解决方案。

关键字: 测试测量 电源技术

泰克战略技术和先进集成电路(AIC)总监Sarah Boen与Electronic Specifier探析电子测试与测量行业。

关键字: 测试测量

设计工程师为了解决ISI问题,常常需要在链路损耗和均衡技术之间做出综合考虑。泰克的SDLA软件不仅可以模拟发送端的Tx EQ和接收端的Rx EQ,还能模拟传输链路的不同损耗。

关键字: 通信 示波器 测试测量

在现代化的科技领域中,位置、速度和位移的精确测量与控制对于工业自动化、机器人技术以及其他各种高精度应用至关重要。正交编码器作为一种高性能的位置传感器,在这些领域发挥着至关重要的作用。本文将深入探讨正交编码器的工作原理,以...

关键字: 正交编码器 测试测量 传感器

第三届汽车测试技术周于2024年3月21日-22日在上海举行,泰克作为汽车行业值得信赖的测试测量专家,为新能源汽车行业提供全栈式测试解决方案,从初期的器件选择到最终的产品认证多个测试环节助力产业应对AI浪潮下的技术革新。

关键字: 测试测量 汽车电子
关闭
关闭