当前位置:首页 > 测试测量 > 测试测量
[导读] 下面以某装置中的安装的电磁流量计为例,此装置选用了40多台电磁流量计作为测量单元。装置正式投入运行后,大部分电磁流量计都工作正常,不过也有少数电磁流量计工作不正常。经现场操作人员通过长期的观察与分析,

下面以某装置中的安装的电磁流量计为例,此装置选用了40多台电磁流量计作为测量单元。装置正式投入运行后,大部分电磁流量计都工作正常,不过也有少数电磁流量计工作不正常。经现场操作人员通过长期的观察与分析,得出以下的结论,这些工作不正常的电磁流量计,不是由于电磁干扰引起的,而是由工艺流体波动的干扰引起的,在此将几个其中主要的问题归纳如下。" v! |. F2 s$ O6 h
1、强流束的干扰:. n# H! ~H9 l8 a- A+ d% c
本装置有一台非常重要的电磁流量计,其设计安装位置如图2—19所示。


电磁流量计FT-112安装在弯曲管遭的底部A位置,前后直管段长度均符合要求。: ?/ S; v3 P& C# g
但装置投运后,很长一段时间工作不正常。从DCS趋势图上看出流量波动很大,趋势图杂乱,而经反复检查,仪表安装、电极及接地均无问题。
后又检查工艺上游管道安装情况,主管道的流量由三股流束Fl、F2、F3组成,其中F3来自一个高位槽,和流量计* q# w7 f; ], d& o
安装位置标高差约20m。而D段管道长约lm,H段管道长约1.5m。F3流束从高位槽下来后,由于其巨大的位能转换成动能,使得F3未能和F1,F2混合好而直接穿过电磁流量计,也即有两种不同流速的流体穿过流量计。这股流束形成对主流体的干扰,使流量计指示紊乱波动。* W) # Z+ M4 z% ]* d/ k
找到原因后,将电磁流量计FT-ll2从A位置移至B位置(参见图2—19),B位置距原管道弯曲部分约2m。改进安装位置后,这一长期困扰生产的问题终于得到解决。( g! O; C# u0 M5 R^" D! [# [7 N
2、容器内局部阻力变化对流量的干扰:* t- X* L! r, W8 X5 L
装置内另有一个电磁流量计,其原设计安装位置如图2-20所示。*
m# _6 g- K' v/ s6 _T: x, e



电磁流量计FT—377其前后直管段长度及接地均符合要求,但是开车后其流量示值一直跳动,且查不出原因。^% f3 v' ~5 k2 H) Fi0 a
一个偶然的机会,母液罐内的搅拌器停运后却发现流量示值稳定了。经检查发现,此搅拌器是侧壁安装,且其位置距流量计管线出口位置仅约lm。很显然,是搅拌器浆叶所翻起的浪波改变了管道出口的阻力。流量计出口到容器壁的距离D1约1.5m,由于距离太短,搅拌浪波使管道出口压力波动,从而使流量计出口流速不稳,使流量示值产生跳动。9 p; D" a! w# @
后将流量计从A位置改到B位置(参见图2-20),距原安装位置约10m,流量计才得以正常运行。
3、温度对流量值的干扰:6 e% i: f: Q' b2 d7 d0 Y
装置中有一工艺线路如图2-21所示,其中FT—114,FT—126,FT—127均是电磁流量计。



工艺流体经流量计FT—114后再经两个流量计FT—126,FT—127进入反应器。在正常时,FT—114的示值应该等于FT—126及FT-127流量之和,但有时发现误差很大。
在工艺人员的配合下,发现原来在投料初期,流经FT-127的一股流体要经过一个换热器E(根据工艺条件有时要对这股流体加热,把原来约100℃左右的工艺介质升温到180℃)。由于这一股流体的温度升高引起液体体积膨胀,使流经FT—127的流束的速度加快。8 D8 ^: V, @$ }' ~

由于电磁流量计本质上是速度式流量计,因而使这股流束所指示的流量数值加大,从而使分流量之和大大超过总流量计的示值。根据温度情况对这股流量进行修正,从而使问题得以解决

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭