当前位置:首页 > 测试测量 > 测试测量
[导读]熟悉LABVIEW的朋友们都知道,LABVIEW提供了类似于汇编语言的IN OUT指令,可以直接操作计算机端口,这在一般编程语言中是禁止的, 体现了LABVIEW强大的硬件操控能力。除了直接操作端口外,个别情况下我们可能会遇到直

熟悉LABVIEW的朋友们都知道,LABVIEW提供了类似于汇编语言的IN OUT指令,可以直接操作计算机端口,这在一般编程语言中是禁止的, 体现了LABVIEW强大的硬件操控能力。

除了直接操作端口外,个别情况下我们可能会遇到直接读写物理内存的问题。LABWINDOWS/CVI提供了几个有关物理内存的函数,自然我们可以通过CIN或者DLL,使LABVIEW间接具有操控物理内存的能力,但这不是我们今天要探索的。

下面是CVI支持的IO端口操作函数和有关物理内存操作的函数列表和简单说明。

Port IO Input Byte From PortinpInput Word From PortinpwInput Double Word From PortinpdOutput Byte To PortoutpOutput Word To PortoutpwOutput Double Word To Port

outpd

Physical Memory Access Read From Physical MemoryReadFromPhysicalMemoryRead From Physical Memory ExReadFromPhysicalMemoryExWrite To Physical MemoryWriteToPhysicalMemoryWrite To Physical Memory ExWriteToPhysicalMemoryExMap Physical MemoryMapPhysicalMemoryUnmap Physical Memory

UnMapPhysicalMemory

过去一般的做法是把上述的函数封装成DLL或者创建CIN。

如果我们跟踪LV中的端口操作函数,可以发现LV中的IN OUT实际上也是通过调用一个DLL中的函数,从函数名称上也应该是封装了上述的函数。

实际上,这个DLL文件包含了很多函数,只是没有直接向用户敞开,下面是隐藏的函数列表。

从DLL文件名称上看,该DLL文件应该是重新封装的打包DLL..

下面我们探索一下这些隐含的函数是否直接可用,由于直接操控物理内存,使用时要特别注意。看看CVI中ReadFromPhysicalMemory函数的原型定义。

--------------------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------------------

经常使用计算机端口操作的朋友们可能经常会在BIOS中查看计算机串口、并口的端口地址。COM1和COM2的地址一般为0X3F8和0X2F8,计算机并口的数据寄存器地址一般为0X378,早期计算机也有0X3BC的情况。这些端口地址在计算机启动后,会直接映射到0X400开始的一段内存空间上。DOS时代可以直接通过DEBUG来查看,下面我们通过读物理内存函数来验证一下这些函数是否可用。

从实验的结果上看,正确返回了0X3F8 0X2F8 0X378,这说明了这些隐含的函数是完全可用的。这些函数使用时必须谨慎,下面给出读物理内存函数的详细配置,以防出现问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭