当前位置:首页 > 测试测量 > 测试测量
[导读]简单而言,动态调用指的是通过程序控制另外一个程序的运行、停止、赋值和获取值等。LabVIEW提供了多种动态调用的方式,从底层而言是通过VI Server技术实现的。 图 31所示为LabVIEW中的Application Control选板,动态

简单而言,动态调用指的是通过程序控制另外一个程序的运行、停止、赋值和获取值等。LabVIEW提供了多种动态调用的方式,从底层而言是通过VI Server技术实现的。
图 31所示为LabVIEW中的Application Control选板,动态调用所使用的节点都位于这个选板。当调用一个在硬盘、内存甚至是网络路径上的vi时,首先要使用Open VI Reference以将该VI载入内存并获取VI的“句柄(Reference)”;然后再使用该句柄进行其它的控制操作;最后再关闭该VI的句柄避免内存泄漏,这就完成了一次对VI的调用。


图 31 Application Control选板
图 32是一个动态调用的具体实现代码,首先使用Open VI Reference获取被动态调用VI的Reference(例子中是C:average.vi);再使用Call By Reference Node节电动态运行该VI;最后关闭VI的Reference。在使用Call By Reference Node时需要事先指定被调用VI的输入输出接口,也就是说这种动态调用的前提是必须知道被调用VI的输入输出接口,否则无法进行动态调用。


图 32 VI的动态调用
Open VI Reference的路径输入是一个多态的输入口,也可以使用String输入,如图 33所示。此时被调用的VI必须在内存中,且输入的是被调用VI的文件名。值得一提的是这种“文件名”调用方式在可执行程序中是无法被调用的,因此建议最好采用路径的调用方式。


图 33 Open VI Reference的多态性
【应用5】
本例将使用LabVIEW的动态调用方式实现斐波那契数列(Fibonacci数列)。斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和。在数学上表述为:f(n)=f(n-1)+f(n-2),其中n>=3,f(1)=f(2)=1。显然这是一个比较熟悉的递归调用,但是在LabVIEW中似乎很难实现。由于LabVIEW不允许同名的VI同时在内存中,因此一个VI是无法VI调用本身的。但是,通过VI的可重入技术和动态调用技术却可以实现VI的递归调用。
图 34所示为Fibonacci数列在LabVIEW中递归的实现方式。case结构有两个分支,当n<=2时直接输出f(n)=1;当n>=3时,输出f(n)=f(n-1)+f(n-2)。此时需要把VI设置为可重入状态。


图 34 Fibonacci数列
同理我们也可以使用这种递归的方式实现f(n)=n!的算法,从数学上可以写作f(n)=n*f(n-1),其中n>=1,f(0)=1。具体的实例将不再详述。此外,递归算法的效率比较低,在实际应用中应谨慎使用。打开Highlight工具,在Call By Reference Node运行时,程序是处于等待状态的,只有被调用的VI运行完毕,主程序才会继续执行。这似乎无法解决在本节开头提到的问题,那么是否存在一种动态调用方式使被调用的VI与主VI之间分别独立运行呢?答案是肯定的。
VI本身是有很多的属性和方法的,如图 35所示。使用这些方法就可以动态控制VI的运行、停止和赋值,各个属性节点和方法的具体含义见LabVIEW的帮助文档。使用这种方式动态调用VI时,并不需要知道VI的输入输出接口。


图 35 VI Method
图 36是该使用“属性节点和方法”实现动态调用的一个实例。在大多数应用程序启动时会显示一个启动画面用来显示版权、开发单位、软件版本等信息,等待2秒之后关闭启动界面并启动应用程序主界面。图中使用了动态调用的方式启动主程序(Main.vi)并使主程序独立运行,首先运行程序后设置2秒钟的延时;其次,将启动画面的界面设置为“隐藏”(并没有退出内存,只是隐藏了前面板),并且使用Open VI Reference获取VI的句柄;然后使用FP.Open属性打开主程序的前面板(只是打开了前面板并没有运行);使用Run VI方法运行主程序,将Wait Until Done设置为false,这样就可以保证被调用VI的独立运行;最后,关闭当前VI的前面板。


图 36 VI的动态调用
通过Highlight工具看出该VI的运行是独立的,并没有等待Main.vi运行结束才继续执行。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭