当前位置:首页 > 电源 > 电源AC/DC
[导读] 电路功能与优势许多应用都要求通过高分辨率、差分输入ADC来转换单端模拟信号,无论是双极性还是单极性信号。本直流耦合电路可将单端输入信号转换为差分信号,适合驱动PulS

电路功能与优势

许多应用都要求通过高分辨率、差分输入ADC来转换单端模拟信号,无论是双极性还是单极性信号。本直流耦合电路可将单端输入信号转换为差分信号,适合驱动PulSAR系列ADC中的18位、1 MSPS器件AD7982。该电路采用单端转差分驱动器ADA4941-1 和超低噪声5.0 V基准电压源ADR435 ,可以接受许多类型的单端输入信号,包括高压至低压范围内的双极性或单极性信号。整个电路均保持直接耦合。如果需要重点考虑电路板空间,可以采用小封装产品,图1所示的所有IC均可提供3 mm × 3 mm LFCSP或3 mm × 5 mm MSOP小型封装。

图1:单端转差分直流耦合驱动器电路(原理示意图)

电路描述

AD7982的差分输入电压范围由REF引脚上的电压设置。当VREF = 5 V时,差分输入电压范围为 ±VREF = ±5 V。从单端源VIN到ADA4941-1的OUTP的电压增益(或衰减)由R2与R1之比设置。R2与R1之比应等于VREF 与输入电压峰峰值VIN之比。当单端输入电压峰峰值为10 V且 VREF = 5 V时,R2与R1之比应为0.5。OUTN上的信号为OUTP信号的反相。R1的绝对值决定电路的输入阻抗。反馈电容CF根据所需的信号带宽选择,后者约为1/(2πR2CF)。20 Ω电阻与2.7 nF电容构成3 MHz单极点低通噪声滤波器。电阻R3和R4设置AD7982的IN?输入端的共模电压。

此共模电压值等于VOFFSET2 × (1 + R2/R1),其中VOFFSET2 = VREF × R3/(R3 + R4)。电阻R5和R6设置ADC的IN+输入端的共模电压。此电压等于VOFFSET1 = VREF × R5/(R5 + R6)。ADC的共模电压(等于VOFFSET1)应接近VREF/2,这意味着R5 = R6。表1列出了适合常用输入电压范围的一些标准1%允许电阻值。

表1:适合常用输入电压范围的电路值和电压

请注意,ADA4941-1采用+7 V和?2 V电源供电。由于各路输出的摆幅必须达到0 V至+5 V,因此正电源电压应比+5 V高数百毫伏,负电源电压应比0 V低数百毫伏。本电路选择+7 V和?2 V的电源电压。+7 V电源还能提供足够的裕量,为ADR435供电。只要ADA4941-1上的绝对最大值总电源电压不超过12 V,并且满足ADR435的裕量要求,则也可以使用其它电压。

AD7982需要一个 +2.5 V supply for VDD电源以及一个VIO 电源(图1未显示),后者的电压可以在1.8 V至5 V之间,取决于I/O逻辑接口电平。

本电路对电源时序不敏感。在瞬间过压条件下,AD7982输入端可以承受最高±130 mA的电流。

AD7982 SPI兼容串行接口(图1未显示)能够利用SDI输入,将几个ADC以菊花链形式连接到单个三线式总线上,并提供一个可选的忙闲指示。采用独立电源VIO时,该器件与1.8V、2.5V、3V和5V逻辑兼容。

为了使本文所讨论的电路达到理想的性能,必须采用出色的布线、接地和去耦技术。至少应采用四层PCB:一个接地层、一个电源层和两个信号层。

所有IC电源引脚都必须采用0.01 μF至0.1 μF低电感、多层陶瓷电容(MLCC)对接地层去耦(为简明起见,图1未显示),并应遵循“了解更多信息”部分所引用IC的各数据手册中提出的建议。

有关推荐的布线方式和关键器件位置,应参考产品*估板。请在器件的产品主页上查看(见“了解更多信息”部分)。

常见变化

ADR43x 系列基准电压源可以提供与ADC接口的各种不同基准电压值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭