当前位置:首页 > 单片机 > 单片机
[导读]S698PM芯片是一款抗辐照型的高性能、高可靠、高集成度、低功耗的多核并行处理器SoC芯片,其芯片内部集成了丰富的片上外设,可广泛应用在航空航天、大容量数据处理、工业控制、船舶、测控等应用领域;而J750是业界比较认可测试结果的SOC芯片ATE(Automatic Test Equipment)测试机,市场占有率非常高。下面主要介绍在J750上开发S698PM芯片BSD测试程序及注意事项。

 1. 概述

随着SOC芯片系统功能越来越复杂,在一颗芯片中,通常包括有数字部分、模拟部分以及相关的存储器件,甚至有的还有射频模块,这不但对ATE测试设备提出更快、更高的要求,而且还要考虑测试时间成本,因此通常客户会要求测试程序前两项测试项目要能够快速判断出SOC芯片90%常见问题的缺陷。经过多年SOC测试方法和测试原理摸索,逐渐形成前两项测试内容标准:一个是电流功耗测试,另外一个就是BSD测试项目流程。

2. S698PM芯片简介

S698PM芯片是一款抗辐照型的高性能、高可靠、高集成度、低功耗的多核并行处理器SoC芯片; S698PM芯片内部集成了丰富的片上外设,包括常见USB2.0主控器、I2C主控器、以太网控制器等功能模块; S698PM芯片支持RTEMS、 eCOS、VxWorks、Linux等实时嵌入式操作系统,用户可方便地实现嵌入式实时控制系统的高性能多核并行处理设计。

S698PM芯片采用了TMR技术对芯片内部所有逻辑单元进行了三模冗余加固,采用EDAC技术对内部与外部存储器进行了检错纠错加固,因此该芯片的具有很高的抗辐照能力。

S698PM是全球第一款量产化的对标LEON4内核版本的嵌入式SPARC V8多核SOC芯片,其在功能及性能等方面均领先了业界的同类型产品。S698PM代表了当今SPARC嵌入式SOC芯片的最高水平。

3. BSD测试项目原理

BSD(Boundary-scan Diagnostics)的测试原理主要是利用芯片里JTAG电路进行芯片管脚电路检测是否有功能缺陷的测试方法。因此SOC芯片里的JTAG电路主要具备两个功能,并且可通过模式选择管脚来设定。一个功能是通过JTAG电路进行软件配置和调试SOC芯片内核工作参数,实现软件在线调试功能;另一个功能就是通过JTAG口灌入扫描控制信号进行芯片硬件电路的BSD测试或是MBIST测试。

在芯片设计阶段,当插入JTAG电路的同时,会在芯片的所有管脚接口上插入一个带时钟的触发器,并把该时钟信号连接到JTAT_CLK信号上,同时把触发器的输入端和输出端按照扫描链的串行互联方式连接,并把最初的输入端连接到JTAT_DI端,把最后的输出端连接到JTAT_DO端,形成一个闭环的测试链。最后利用工具生成BSD测试程序需要的PATTERN文件,提供给测试机测试需要。

4. 基于J750的BSD测试方法

首先,BSD测试需要准备测试向量文件,该文件是由IC设计工程师在插入JTAG电路时,生成的边界扫描向量表文件,同时生成测试机所需的TimingSet参数设置文件,这两个文件共同决定了信号的类型及信号随时钟周期的变化。

信号的常见类型有RH、RL、NR、ROFF、SBC、SBH、SBL等,一般时钟信号的类型为SBL,这样时钟的周期可设、脉冲宽度可控,方便测试机控制该关键信号;其他信号类型一般为NR,方便J750测试机监测。

第二步骤,利用J750测试软件Patter Compiler功能模块,把标准PATTERN文件转化成J750识别的格式文件,如下图1所示:

第三步骤,利用J750的测试程序导入功能,将上述两个文件导入到程序里,完成测试机的TimingSet参数等参数设定, 并根据测试机特性及S698PM时序要求可以微调参数,如下图2所示:

第四步骤,设定BSD Function Test功能模块参数,调用BSD测试程序所需的直流和交流参数,以及PATTERN文件。如下图3所示:

第五步骤,执行BSD function Test命令,在测试过程中,如果结果不满足要求,可进行TimingSet表格中的时间参数微调,测试结果报告如下图4所示:

5. 结束语

本文简要介绍了采用 Teradyne-J750EX 自动测试设备来测试嵌入式SoC 芯片S698PM 的BSD测试原理及注意事项。从测试效果来看,因BSD测试方法与芯片内部电路没有太大关系,可以快速判读出芯片管脚电路是否有缺陷,大大地缩短测试时间,从而节省了测试时间,降低了测试成本,因此该BSD测试方法值得推广。

参考文献

[1] 颜军. SPARC 嵌入式系统设计与开发-S698系列处理器实用教程[M].中国标准出版社, 2013.

[2] JTAG标准协议IEEE1149.1-1990

[3] grip.pdf/grmon-2.0.pdf http://www.gaisler.com

[4] J750 Basic Programming Student Manual

[5] S698PM芯片用户手册

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭