当前位置:首页 > 工业控制 > 电子设计自动化

1 引言

可编程控制器(Programmable Logic Controller)具有抗干扰强、可靠性高、编程简单的特点,被广泛应用于工业控制领域。但是传统小型可编程控制器难以将智能控制算法嵌入到控制系统中。本文以嵌入式微处理器S3C44B0X+FPGA为核心设计通用小型的可编程控制器,论述了PLC主机各功能模块通过CAN总线与S3C44B0X连接的接口电路和主机程序设计及执行过程。通过FPGA配置I/O口和嵌入先进的智能控制算法,如PID、模糊控制、神经网络算法等,这些控制算法作为控制模块嵌入PLC的梯形图程序中作为功能模块调用,各个模块之间通过CAN总线连接,用户根据被控对象现场的需求可以选择多个人机界面装置,提供监控控制系统运行状态的便利。

2 PLC系统的总体设计

系统采用32位嵌入式微处理器S3C44B0X作为可编程控制器的CPU,以此为核心扩展系统需要的存储器;通过FPGA扩展PLC所需要的I/O口,完成相应输入输出模块的设计;系统通过微处理器的SPI接口扩展CAN总线,用于连接上位机、主控机、编程器、以及液晶显示与触摸屏等功能模块进行通信,用户根据被控对象现场需求可以选择多个人机界面装置,这些装置作为扩展模块挂接在CAN总线上;实现智能控制算法的FPGA与主机微处理器S3C44B0X的I/O口连接。用户使用手持编程器编写指令表程序后,通过CAN总线传输到控制主机的存储器中,以便CPU执行这些程序;系统运行的状态参数通过CAN总线传输到监控系统中,在监控系统中显示系统运行的状态;FPGA实现的智能控制算法作为控制模块嵌入PLC梯形图程序中作为功能模块调用。系统的结构框图如图1所示:

3 PLC主控器的设计

3.1系统存储器的扩展

3.1.1 存储器Nor Flash 的扩展

可编程控制器需要掉电保存系统启动的引导程序、梯形图或指令表程序,以及解释梯形图或指令表的解释程序,而S3C44B0X微处理器内部没有存储器。闪速存储器(Flash Memory)具有非易失性,并且可轻易擦写,在嵌入式系统中得到广泛的应用。所以本课题采用了2MB的SST39VF1601存储器来存储上面提到的引导程序、解释程序及用户程序。该存储器采用标准的总线接口与处理器交互,对它的读取不需要任何特殊的代码。由于系统启动的引导程序储存在Flash ROM,要把其映射在处理器的Bank0地址空间,这样系统上电复位后,处理器就自动从0x00000000地址处开始取得指令运行。Flash与S3C44B0X的接口电路图如图2所示。处理器ADDR20~1对应着Flash ROM的A19~0,偏移了1位,这是由于S3C44B0X是按照字节编址的,而Flash ROM是以16位为一个存储单元。

图1 系统结构框图

3.1.2 SDRAM 的扩展

随机存取存储器RAM(Random Access Memory)是易失性的存储器,在掉电后数据即消失。但与ROM器件不同的是,它的随机读写速度非常快,写入数据之前也不需要进行擦写,这些特性使它成为嵌入式系统中必不可少的存储设备之一。为了提高系统执行的速度,在系统启动时,把梯形图或指令表程序复制到读写更快的RAM中,这样系统执行程序的过程在RAM中完成,提高了可编程控制器扫描程序的周期。

常用的RAM分为SRAM和DRAM两种类型,其中DRAM又分为DRAM和SDRAM。S3C44B0X芯片本身提供了与DRAM与SDRAM直接接口的解决方案,因此只需对与存储器控制器相关的寄存器进行的适当的配置。本系统采用的同步动态存储器SDRAM为8MB的HY57V641620,映射在Bank6地址空间。接口电路图如3所示。这里的BA即A22~21。由于HY57V641620的存储结构为:1Mbⅹ16ⅹ4 Bank,在电路上以A22~21作为bank地址选择线。

图2 程序存储器Nor Flash的扩展 图3 SDRAM的扩展

3.1.3 EEPROM的扩展

在可编程控制器中,一些编程软元件的数据内容需要掉电保存,如:D数据存储器、部分特殊辅助继电器M等。系统通过S3C44B0X自带的IIC接口扩展EEPROM,用来保存这些掉电需要保存数据的编程软元件,在系统启动时,首先把这些软元件的值从EEPROM拷贝到SDRAM中,以便提高系统执行速度。采用的EEPROM型号为:AT24C512,系统扩展原理图如下。系统扩展只需要两根线,一根数据线,一根时钟线,这两根线加上拉电阻是因为IIC总线是开漏输出。

图4 IIC接口扩展EEPROM

3.2 I/O口扩展

在嵌入式微处理器S3C44B0X中总共有71个普通的I/O口,这些I/O引脚大多都是多功能引脚,其中一些I/O口已经作为专门的应用。系统实现的目标需要128个I/O口,即可编程控制器具备128个点,这样微处理器本身的I/O口无法满足系统的需要,需要通过FPGA扩展。

采用的FPGA型号为EP1K30TC208-3。该芯片具有208个引脚,可配置的I/O口最多达到147个。系统通过S3C44B0X总线进行扩展,这样操作FPGA的I/O口就像操作ARM本身的I/O口一样,操作起来非常的方便。FPGA与S3C44B0X的连接框图如图5:

ARM地址线、数据线与FPGA的地址线、数据线连接,由于FPGA每个存储单元是16位,而ARM微处理器每次处理的是8位,因此地址线要偏离一位;FPGA的存储单元映射到ARM中的Bank2;nOE、nWE分别是读写信号线;TxD0用来下载FPGA工作需要的配置文件;PF2、PF3、TxD0共三根线提供FPGA启动工作需要的时序;SCLK是ARM与FPGA工作(读、写)需要的时钟。

3.3 输入输出模块的扩展

可编程控制器输入输出模块主要有数字量和模拟量输入输出。模拟量的输入输出即A/D、D/A是对象过程参数和PLC主机之间的接口。对象过程参数经过传感器转换成标准的电量后,经过A/D转换器进入PLC主机中;PLC主机经过D/A数模转换把数字量转换成模拟量输出。由于S3C44B0X微处理器内部带有了8路10位的A/D转换器,在一些要求不是很高的控制领域,该转换器可以满足要求,因此不需扩展。S3C44B0X内部没有D/A转换器,所以采用的D/A转换器为MAX5741进行扩展,该转换器是4路10位,使用SPI接口进行扩展,其与微处理器的连接原理图如图6:

图5 FPGA配置I/O口 图6 D/A转换器的扩展

3.4 CAN总线扩展

系统使用CAN现场总线在各个模块之间交换数据、通信,如:用户使用手持编程器或PC机编写梯形图或指令表程序后,通过CAN总线把程序传输到PLC主机中。由于微处理器S3C44B0X本身没集成CAN控制器,需要单独扩展CAN控制器,采用的CAN控制器为MCP2510,收发器为PCA82C250。MCP2510工作电压为3.3V,能够直接与S3C44B0X微处理器I/O口相连。为进一步提高系统抗干扰性,可在CAN控制器和收发器之间加光耦隔离6N137,原理图如图7:

图7 CAN总线的扩展

4程序设计及执行过程

程序设计一个关键技术是编写梯形图或指令表程序的解释程序。根据指令的逻辑关系,分别给每条指令编写其对应的子程序,当CPU扫描到某条指令的编码时,就调用其子程序,进行逻辑运算,并把结果送到映像寄存器中。

程序执行过程分为三个阶段:输入处理阶段、程序执行阶段、输出处理阶段。如图8所示。系统上电后,完成堆栈、存储器、中断等的初始化;把D数据寄存器值、部分M特殊辅助寄存器值等一些需要掉电保持的数据,从EEPROM拷贝到SDRAM指定的地址中;把用户编写的梯形图或指令表程序从Nor Flash拷贝到SDRAM中以便提高系统的运行速度。最后系统才真正开始扫描用户编写的梯形图或指令表程序。

在输入处理阶段,CPU读取所有输入端子的状态,并把这些状态内容保存在输入映像寄存器中;在程序执行阶段,CPU根据输入状态的信息,从梯形图或指令表程序的第一步开始执行,当CPU扫描到有关智能控制模块时,把智能控制模块的一些设置值、参数送到FPGA中, FPGA在主机扫描程序的同时,并行处理智能控制算法,并不断的把运算的结果送到控制参数存储器中;在输出处理阶段,把输出映像寄存器中的内容送到输出锁存寄存器中,使输出端口电平发生变化,执行机构动作驱动要控制的对象,最后把指针指向程序的第一步,使程序周而复始的工作,直到收到停止工作信号为止。

图8 程序执行过程

5 结论

本文创新点:基于CAN现场总线、嵌入式微处理器S3C44B0X+FPGA设计的可编程控制器,采用了32位集成度高的嵌入式微处理器S3C44B0X为核心,简化了电路的设计,提高了系统的可靠性及运行速度;通过FPGA配置I/O口,解决了众多芯片I/O口不足的问题,满足了工业控制领域的需求。同时在FPGA中实现的智能控制算法作为功能模块嵌入PLC梯形图程序中,主机执行程序的同时,FPGA也在并行完成智能控制算法的运算,即不影响系统执行的速度,又解决了传统小型PLC不能嵌入智能算法的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭