当前位置:首页 > 测试测量 > 测试测量
[导读]摘要 MMA8451是一款低电压供电,电容式微机械全数字式的传感器,可测量三轴方向的加速度。基于这款高性能的传感器,设计出主从式振动检测仪器。文中介绍了整个电路的设计思路与组成结构,给出了作为前端传感器在虚拟

摘要 MMA8451是一款低电压供电,电容式微机械全数字式的传感器,可测量三轴方向的加速度。基于这款高性能的传感器,设计出主从式振动检测仪器。文中介绍了整个电路的设计思路与组成结构,给出了作为前端传感器在虚拟仪器中的应用,并且给出了测试结果。使用主从式对虚拟仪器进行设计,实现了预定目标并且摆脱了虚拟仪器开发对LabView的依赖。

关键词 振动检测;三轴加速度传感器;虚拟仪器

自从美国国家仪器公司(NI)提出基于计算机技术的虚拟仪器概念以来,电子仪器得到了较大的发展。现在的虚拟仪器大多使用基于NI公司的LabView专用的PCI总线的数据采集卡,但是受PC机箱和总线限制,电源功率不足,机箱内部的噪声电平较高,机箱内无屏蔽等诸多缺点,限制了虚拟仪器的推广与使用。文中使用主从式虚拟仪器用以代替传统的PCI总线的数据采集卡,主从式虚拟仪器由主机和从机两部分组成,从机即为该振动检测电路,完成数据的处理和数据的显示。

1 从机硬件结构

设计基于主从式虚拟仪器的设计思想,使用单片机作为从机的控制系统,由于STC89C52RC性价比高并且应用技术成熟等特点,故采用其作为从机的控制芯片。单片机用于接收传感器信号并进行数据处理,通过串行口发送到主机进行数据分析和显示。这种设计的优点是既可以与笔记本计算机相连,方便野外作业,又可与台式PC机相连,实现台式和便携式两用,使用方便。基本设计思想框图如图1所示。

1.1 传感器及其外围电路设计

MMA8451数字式三轴加速度传感器是飞思卡尔公司新推出的一款低电压供电,电容式微机械传感器,其最高精度可达14位。传感器采用QFN封装,灵活的可编程选项,拥有两个可配置的中断端口。其模式可选,在嵌入式系统中可大幅地节省电量,传感器内部自带低通滤波器功能,在作振动检测时可以快速作出反应。在嵌入式系统应用中,静止状态时可以保持功耗状态,并且器件可以由中断信号唤醒。

作为一款数字式输出的传感器,相比于传统的输出模拟信号的传感器而言,无需添加A/D转换器,并且传感器的集成电路自带高通滤波器,大幅简化了外围电路的设计,其典型电路如图2所示。

I2C协议:由于MMA8451默认使用I2C协议,所以,在此将对I2C的工作方式进行解释。I2C总线使用3根信号线进行通信,分别是SCL、SDA和SA0,外部上拉电阻需要将SDA和SCL接到VDD的IO上,当总线空闲时,这两根线表现为高电平状态。MMA8451的I2C接口可工作在快速模式400 kHz或普通模式100 kHz。

总线传输开始由START信号触发,START信号定义为,当数据线从高电平跳变到低电平,而时钟线SCL仍然保持高电平。由主机发送START信号后,I2C总线被认为从空闲状态进入忙状态。紧接着START信号后主机发送的字节,前7位用于指示从机地址,第8位用于指示数据方向是读出还是写入。地址发送完毕后,总线上的所有从机将自己的地址和总线上接收到的地址进行比较,地址匹配的设备即为主机选中设备。第9个脉冲为应答响应,发送设备必须在这个ACK周期内释放数据线,而接收设备则需要在ACK周期的时钟高电平期间将数据线拉低。

SCL线是高电平时,SDA线由低电平向高电平切换,这个情况表示停止条件。停止条件将终止发送器的发送。

1.2 单片机STC89C52RC

从机的核心部件采用宏晶科技推出的新一代高速、低功耗、超强抗干扰的单片机STC89C52RC,指令代码完全兼容传统8051单片机,其性能与可靠性完全满足本次设计的需求。工作时的基本参数为:工作频率范围,0~40 MHz,相当于普通8051的0~80 MHz,实际工作频率可达48 MHz;用户应用程序空间为8 kByte;12时钟/机器周期和6时钟/机器周期可以任意选择;片上集成512 Byte RAM;ISP/IAP,无需专用编程器,无需专用仿真器,可通过串口直接下载用户程序,具有EEPROM功能;具有看门狗功能;共3个16位定时器/计数器。

1.3 5 V转3.3 V电源电路

由于现今晶体管尺寸在持续减小,电路集成度越来越高,晶体尺寸也随之减小。导致晶体管击穿电压也变更低,但当击穿电压低于电源电压时,则要求减小电源电压。对于MMA8451电路而言,就是用3.3 V电源。

由于单片机的速度和复杂性,使之达到了足以要求降低电源电压的程度,并正在向5 V电源电压以下转换。但绝大多数接口电路仍然是为5 V电源而设计的。为使MMA8451电路正常工作,需要将5 V电源转换为3.3 V。另外,这个任务不仅包括逻辑电平转换,同时还包括为3.3 V系统供电、电压电流稳定问题、转换模拟信号使之避开从5~3.3 V的障碍。

设计采用LM1117电路,LM1117是一个低压差三端可调稳压集成电路。其压差在1.2 V输出,电流为800 mA时为1.2 V。LM1117有可调电压的版本,通过两个外部电阻可实现1.25~13.8 V输出电压范围。另外还有5个固定电压输出的型号。

LM1117的典型应用如图3所示,在电路中,输出端需要一个至少10μF的钽电容来改善瞬态响应和稳定性。

1.4 通信电平转换电路的选择

由于MMA8451的输出数据速率为1.56~800 Hz,所以在这种速率的传输模式下,使用这种接口简单、使用方便、价格低廉的串口通信方式,成为一种合理的选择,由于单片机STC89C52RC采用TTL电平,但PC机的串行口使用RS-232的电平,所以单片机与电脑不能直接连接,首先必须进行RS-232电平与TTL电平的转换。所以在本设计中使用MAX232作为通信电平转换芯片。

2 振动检测电路的软件设计

从机按照主机的指令,完成数据采集,并且将数据暂时存储,在串口空闲的时候将数据发送给主机。主程序的工作流程如图4所示,图5为串口发送程序的流程图。在图5中,连续发送FF的原因在于选择上位机显示程序中的示波器功能。

3 测试结果

上位机显示软件为软件开发采用VS2010的集成开发环境,使用C#语言模块化编程,为系统调试带来极大的方便。由于传感器输出为数字信号,单片机经过处理后送入示波器,示波器采数字上位机软件示波器。图6为示波器界面显示的测试结果。

4 结束语

设计实现了振动检测的几个基本功能。而且它摆脱了LabView的束缚,所以具有较高开放性和扩展空间。当然,本设计还有许多需要改进的地方,如提高通信的速度和可靠性,提高从机的数据处理速度,除此之外,还需在软件算法上作进一步优化,以提高测试精度,减小数据误差。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭