当前位置:首页 > 汽车电子 > 汽车电子
[导读]1.电控单元(ECU)主要故障及原因发动机电控单元(ECU)本身及线路不良,会造成发动机启动困难或不能启动,怠速不稳甚至熄火,加速不良,排气管冒黑烟等故障。其主要原因是电控单元(ECU)线路接触不良,接头氧化或脱落;外

1.电控单元(ECU)主要故障及原因

发动机电控单元(ECU)本身及线路不良,会造成发动机启动困难或不能启动,怠速不稳甚至熄火,加速不良,排气管冒黑烟等故障。其主要原因是电控单元(ECU)线路接触不良,接头氧化或脱落;外来水分进人电控单元,造成电控单元损坏;维修时操作不当而烧坏电控单元。

2.电子控制系统的检查

(1)电控单元(ECU)的检查

电控单元及其控制线路的故障可用该车型的电控单元检测仪或通用于各车型的汽车电控单元解码器来检查。如果没有这些仪器,也可利用万用表测量电控单元一侧插座上各端子的电压或电阻,以判断电控单元及其控制线路有无故障。用这种方法检测电控单元及控制线路的故障,必须以被测车型的详细维修技术资料为依据。这些资料包括:该车型电控单元线束插头中各端子与控制系统中的哪些传感器、执行器相连接;各端子在发动机不同工作状态下的标准电压值。检测时如发现异常,则表明有故障:与执行器连接部分异常,则表明电控单元有故障;与传感器连接部分异常,则可能是传感器线路有故障。

检查ECU的常用方法如下。

1)电压测量法。按照ECU插接件图及ECU各接线点正常电压数据及测量条件,用高输人阻抗的万用表进行检查。

①蓄电池电压应在11V以上。

②拆下ECU线束连接器,但应使连接器保持在连接的状态下进行电压检查。

③应使点火开关在ON位置。

④应使万用表从线束连接器侧向插入,或用大头针插人,测量ECU各端子与搭铁间的电压。

⑤测量结果应与标准值比较,若与标准值差别很大,说明ECU或控制线束存有故障。

2)电阻测量法

①拔下ECU线插头,对照插接件图及ECU各接线点正常电阻值进行测量。

②采用高阻抗数字式万用表,并尽量用高欧姆挡测量,以防测量电流损坏ECU内部元件,使故障扩大。

③各种车型的ECU插接件图均不一样,但使用符号在同一车系中具有通性:ECU各接点电压及电阻值,对其他车型而言仅能参考。

(2)传感器的检查

1)冷却液温度传感器

冷却液温度传感器本身或线路工作不良时,可能会产生下列故障:①发动机启动困难;②怠速不稳;③容易熄火。

造成冷却液温度传感器故障的主要原因如下。

①水垢、油垢是造成冷却液温度传感器失准的主要原因。冷却液温度传感器失准又造成空燃比(A/F)失准,因此会造成冷启动困难、怠速不稳、加速不良或排气管冒黑烟(费油)。

②失效是指断路或导通。断路时,其电阻为无穷大,造成喷油量增大,怠速过高;导通时,电阻为零,造成混合气不再加浓,冷启动困难,热启动时无快怠速。为此,有的ECU有截止功能,该功能一旦失效就校正为正常水温,造成喷油器按正常水温时喷油。

冷却液温度传感器的精密度对喷油量有很大的影响。当混合气过浓或过稀时,应拆检冷却液温度传感器。其检测方法如下。

①测量冷却液温度传感器接线间电阻。在冷却液温度为⒛℃时,其电阻值应为2~3kΩ:80℃时,应为0.2~0.4kΩ。如果测量结果不符合规定要求,应更换冷却液温度传感器。

②点火开关。冷却液温度80℃时,测量点火开关THW与E,间的电压应为0.2~1.0V、如果与之不符,则应做进一步检查。

2)进气温度传感器

进气温度传感器本身或线路工作不良时,可能会发生下列故障:①发动机性能不良;②怠速不稳;③容易熄火;④油耗上升或富油。

造成进气温度传感器故障的主要原因如下。

①使用不良的空气滤清器。

②电气维修人员操作不当(用划火试验法找故障)。

检查结构与冷却液温度传感器相似的进气温度传感器时,可采用检查冷却液温度传感器的方法。在正常情况下,温度为20℃时,电阻阻值约为2~3kΩ;60℃时,阻值约为0.4~0.7kΩ。如果测量结果不符合规定,则应更换传感器。安装于空气流量计内的迸气温度传感器损坏时,应更换空气流量计。

3)氧传感器

氧传感器信号异常将引起发动机油耗增高。氧传感器信号线路必须接触良好,绝缘良好,因为其输出电源微弱,能量极小。

氧传感器有加热式(三线式)和非加热式(单线式)两种。对于加热式,应检测其加热器电阻。氧传感器检查方法如下。

①电压检查法。用输人阻抗高的数字万用表测量氧传感器电压。

启动发动机,在诊断盒上或ECU上测量Ox与E1端的电压,0.451/左右正常。

从进气歧管上拆下汽油压力调节器软管,使压力调节器上部与大气相通。将歧管接头堵住后启动发动机,在正常怠速时测量Ox与E,端的电压应在.5V以上。

②氧传感器电热丝冷电阻阻值为4~40kΩ左右。如不符合规定,应更换氧传感器。

其他传感器还有节气门位置传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、霍耳同步信号传感器等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭