当前位置:首页 > 消费电子 > 消费电子
[导读]二极管、三极管的用途极为广泛,现在的二极管、三极管种类繁多,但是二极管区分正负极的方法大同小异,目前很多人分不清二极管的正负极,同样也是对三极管的发射极、基极、集电极的判断拿捏不准,小编将带领大家分分钟掌握二极管正负极识别以及发射极、基极、集电极。

早期的二极管

早期的二极管包含“猫须晶体(Cat's Whisker Crystals)”和真空管(ThermionicValves)。1904年,英国物理学家弗莱明根据“爱迪生效应”发明了世界上第一只电子二极管--真空电子二极管。它是依靠阴极热发射电子到阳极实现导通。

电源正负极接反则不能导电,它是一种能够单向传导电流的电子器件。早期电子二极管存在体积大,需预热,功耗大,易破碎等问题促使了晶体二极管的发明。

晶体二极管

晶体二极管又称半导体二极管,1947年,美国人发明。在半导体二极管内部有一个PN结和两个引出端。这种电子器件按照外加电压的方向,具备单向电流的传导性。现今最普遍的二极管大多是使用半导体材料如硅或锗。

晶体二极管结构

关于PN结晶体二极管的核心是PN结,关于PN结首先要了解三个概念:

本征半导体:

指不含任何掺杂元素的半导体,如纯硅晶片或纯锗晶片。

P型半导体:

掺杂了产生空穴的含较低电价杂质的半导体,如在本征半导体中Si(4+)中掺入Al(3+)的半导体。

N型半导体:

掺杂了产生空穴的含较低电价杂质的半导体,如在本征半导体中硅Si(4+)中掺入磷P(5+)的半导体。由P型半导体和N型半导体相接触时,就产生一个独特的P-N结界面,在界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于P-N 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的PN结。

以PN结为核心结构,加上引线或引脚形成单向导电的二极管。当外加电压方向由P极指向N极时,导通。

晶体二极管的分类

按材料不同分类

按PN结结构不同

晶体二极管的主要特性

二极管的伏安特性曲线

对PN结外加电压Uw方向为P→N时,Uw大于起动电压,二极管导通;外加电压Uw方向为N→P时,Uw大于反向击穿电压,二极管击穿;二极管连续工作允计通过的最大正向电流。电流过大,二极管会因过热烧毁。大电流整流可加装散热片。

Urm最大反向电压

Urm一般小于反向击穿电压,选规格以Urm为准,并留有余量。过电压易损坏二极管。

反向饱和电流Is

二极管外加反向电压时的电流值。Is反向击穿前很小,变化也很小。Is会随温度的升高而升高,一般地,常温下硅管Is<1uA,锗管Is=30~300uA.

最高工作频率Fm

指二极管能保持良好工作特性的最高工作频率。

不同用途二极管材料结构性能差异

二极管正负极的判断

1.普通二极管有色端标识一极为负极;

2.发光二极管长脚为正,短脚为负。如果脚一样长,发光二极管里面的大点是负极,小的是正极。有的发光二极管带有一个小平面,靠近小平面的一根引线为负极。

万用表中:红笔接“+”,黑笔接“-”;在测发光二极管时,低阻挡测不出来,可用RX10K档测,两表笔接触二极管的两级。如果电阻较小,黑表笔所接的是正极,电阻较大,黑表笔所接的是负极。发光二极管,若与TTL组件相连使用时,一般需串接一个470R的降压电阻,以防器件的损坏。

二极管封装及其方向如下图示:

印制板中通过PCB板上丝印来判别二极管方向的方法总结如下:

通常情况下:

(1)有缺口的一端为负极;

(2)有横杠的一端为负极;

(3)有白色双杠的一端为负极;

(4)三角形箭头方向的一端为负极;

(5)插件二极管丝印小圆一端是负极,大圆是正极。在立式焊接的情况下原件本体在正极圈里。

(6)插件发光二极管方孔为第一脚为正极。

三极管发射极、基极、集电极的判断

三极管的原理和二极管的原理相似,相当于由两个二极管组成,三极管用万用表测量管脚极性用万用表R&TImes;100或者R&TImes;1K档分别测量各管脚间电阻,必有一只脚对其它两脚电阻值相似,那么这只脚是基极,如果红表笔(正表笔)接基极,测得与其它两脚电阻都小,那么这只管子是PNP管。如果测得电阻很大,那么这个管子是NPN管。找到基极后,分别测基极对其余两脚的正向电阻,其中阻值稍小的那个是集电极,另外一个是发射极,这是因为集电结较大,正偏导通电流也较大,所以电阻稍小一点。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭