当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]在项目的特殊环境要求下, CAN总线通信要求使用FPGA作为系统中的主控制器, 较之传统设计使用的单片机, FPGA能够在速度和体积上有更好的适应性。FPGA 一方面减少了电路板

在项目的特殊环境要求下, CAN总线通信要求使用FPGA作为系统中的主控制器, 较之传统设计使用的单片机, FPGA能够在速度和体积上有更好的适应性。FPGA 一方面减少了电路板的复杂程度, 缩短了实现周期; 另一方面, 其丰富的资源、超高的性能和灵活的可编程性, 提高了整个设备的可靠性, 大大增强了电路板设计的灵活性和可扩展性。文中通过设计FPGA 的接口电路, 并利用Verilog语言来编程实现CAN节点之间的通信功能。

1 CAN 接口硬件设计

1.1 CAN 节点的系统构成

一般来说, 每个CAN 模块能够被分成3 个不同的功能块,其结构如图1所示。CAN总线收发器提供CAN协议控制器与物理总线之间的接口, 控制从CAN 控制器到总线物理层或相反的逻辑电平信号。它的性能决定了总线接口、总线终端、总线长度和节点数, 是影响整个总线网络通信性能的关键因素之一。CAN 控制器执行在CAN 规范里规定的完整的CAN 协议, 它通常用于报文缓冲和验收滤波, 对外具有与主控制器和总线收发器的接口。主控制器负责执行应用的功能, 例如控制命令的发送、读传感器和处理人机接口等。它通过对CAN 控制器进行编程, 来控制CAN 总线的工作方式和工作状态, 以及进行数据的发送和接收。

 


图1 CAN 模块系统构成

1.2 接口电路设计

接口电路如图2所示。SJA1000的AD0~ AD7地址数据复用端口、ALE地址锁存端口、RD、WR、片选CS端口均通过转换芯片与FPGA的I /O口相连。SJA1000 的中断输出信号INT连入FPGA, 使CAN通信可以采用中断或查询方式。RST 端口的电路实现SJA1000的上电自动复位功能。MODE 模式选择端接+ 5 V, 设置SJA1000控制器为Intel模式。SJA1000 的时钟晶振采用16MH z, 频率调整电容取15 pF. R16为终端电阻,设计中取120Ω。 CAN 驱动器PCA82C250 的RS脚为工作模式选择位, 接地工作于高速模式, 接高工作于待机模式。系统通过电阻R14将芯片设定于斜率控制模式, 电阻值为47 kΩ , 这时CAN 总线应工作于低速模式, 可提高CAN 总线抵抗射频干扰的能力。在这种情况下, 可直接使用非屏蔽双绞线作为总线。

设计中有2点需要特别注意: 第一点是FPGA 并没有与SJA1000直接相连。这是因为对于设计选取的FPGAXCV600, 其接口电平不支持5 V TTL的I/O 标准, 如果与5 VI/O标准的SJA1000直接相连, 将可能导致FPGA 管脚电流过大, 造成器件锁死或者烧毁。为此采用双向总线收发器74ALVC164245, 把SJA1000的5 V TTL电平信号AD0 ~ AD7、

 

FPGA实现CAN总线通信节点设计 " />

、ALE 转换成3.3 V I/O 标准信号, 连接到FPGA 的引脚上。74ALVC164245 有2个8位电平转换端口, 可独立操作。其中电平信号AD0~ AD7必须按顺序连接在总线收发器的一个8位端口上, 不可以分开。第二点是: 在CAN 控制器与收发器之间不采用光电隔离。这是因为增加光电隔离虽然能增强系统的抗干扰能力, 但也会增加CAN 总线有效回路信号的传输延迟时间, 导致通信速率或距离减少。82C250等型号的CAN 收发器本身具备瞬间抗干扰、降低射频干扰( RFI)以及实现热防护的能力, 它具有的电流限制电路还提供了对总线的进一步保护功能。如果现场传输距离近、电磁干扰小, 可以不采用光电隔离, 以使系统达到最大的通信速率或距离。


图2 接口电路

2 系统软件设计

2.1 设计流程

FPGA对CAN 总线通讯模块的控制主要包括3 部分: CAN总线节点初始化、报文发送和报文接收。由于通讯模块对接收数据的实时性要求并不是很高, 因此CAN 总线的数据接收和发送采用查询方式。

2.1.1 初始化过程

系统上电后首先对82C250 和S JA1000 进行初始化, 以确定工作主频、波特率、输出特性等。SJA1000的初始化只有在复位模式下才可以进行, 初始化主要包括工作方式的设置、验收滤波方式的设置、验收屏蔽寄存器( AMR )和验收代码寄存器( ACR)的设置、波特率参数设置和中断允许寄存器( IER) 的设置等。在完成SJA1000 的初始化设置以后, SJA1000 就可以回到工作状态, 进行正常的通信任务。设计中使SJA1000工作在PeliCan的方式下。

2.1.2 发送过程

发送时, 用户只需将待发送的数据按特定的格式组合成一帧报文, 送入SJA1000发送缓冲区中, 然后启动SJA1000发送即可。当然, 在往SJA1000 发送缓存区送报文之前, 必须先判断发送缓冲区是否锁定, 如果锁定则等待; 判断上次发送是否完成, 未完成则等待发送完成。FPGA 通过SJA1000 向CAN 总线进行数据发送的流程图如图3所示。

 


图3 发送数据流程图

2.1.3 接收过程

接收子程序负责节点报文的接收以及其他情况处理。接收子程序比发送子程序要复杂一些, 因为在处理接收报文的过程中, 同时要对诸如总线关闭、错误报警、接收溢出等情况进行处理。只有在总线正常, 没有错误报警, 并且接收缓冲区中有新报文, 才开始进行数据接收操作。对接收缓冲区的数据读取完毕后释放CAN接收缓冲区。FPGA 通过SJA1000接收CAN总线上的数据流程图如图4所示。


图4 接收数据流程图

2.2 FPGA 顶层模块设计

FPGA顶层的模块设计如图5 所示。其中c lkdiv 模块是将输入的50MH z时钟clock十分频后作为模块基准时钟。SJACTROL模块是控制总线通信的主模块, 而R&W 模块则是根据主模块的信号生成SJA1000所需要的读写时序信号。SJACTROL模块通过start和isw r两个信号通知R&W 模块是否要进行读或写总线操作。若是写操作, 则将地址和数据通过Addrout和Dataout传递给R&W, R&W 将负责把数据准确地送到S JA1000的数据地址复用总线ADDR, 并驱动SJA1000接收数据, 在写操作完成后发送w riteover信号通知SJACTROL写操作完成。读操作时R&W根据SJACTOL送来的地址, 从SJA1000的数据总线上读取数据, 并将得到的数据通过Datasave 总线返回给SJACTROL。[!--empirenews.page--]

 


图5 顶层模块设计

SJACTROL的状态机通过5个状态的转换来实现控制: 空闲状态、初始化状态、查询状态、读状态、写状态。R&W 则是按照SJA1000的芯片数据手册进行时序逻辑设计。在编写模块时, 需注意双向总线的编写技巧。双向口最好在顶层定义, 否则模块综合的时候容易出错。

3仿真结果

FPGA中利用Verilog 编程产生SJA1000的片选信号CS, 地址锁存信号ALE, 读写信号RD、WR.这些控制信号共同驱动SJA1000进行数据接收和发送。设计选取的是v irtex系列的芯片, 逻辑开发在ISE 平台上进行。在FPGA 的调试阶段, 使用xilinx的应用软件 ChipScope pro( 在线逻辑分析仪) 来在线观察FPGA设计内部信号的波形, 它比传统的逻辑分析仪更方便。图6为在线进行数据传送接收时的实际波形。

 


图6SJA1000接收和发送数据的时序仿真

4 结束语

实现了CAN 总线的通信功能, 系统工作状态良好。实践证明CAN 通信节点采用FPGA作为核心控制单元, 与传统的单片机设计相比, 更加灵活并且扩展性更强。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭