当前位置:首页 > 半导体 > Achronix半导体
[导读]Achronix创新的机器学习处理器(MLP)突破传统FPGA时序性能瓶颈

介绍:本文将重点描述基于AlexNet的2D卷积核的实例应用。

正文:

MLP_Conv2D是功能齐全的设计,可将2D输入图像与多个内核同时进行卷积。 该设计充分利用了MLP和BRAM模块,每个MLP一个周期执行12个int8乘法。此外,MLP列和BRAM块均等级联以有效地将图像数据传递,从而允许同时处理多个内核。

该设计使用NoC接入点(NAP)从片上网络(NoC)读取或写入数据。NoC连接到Speedster7t器件中的GDDR6控制器再到外部存储器。

AlexNet

尽管最初为AlexNet图像和内核大小配置了MLP_Conv2D设计,但是2D卷积是一个通用过程,因此可以重新配置该设计并使其适应许多不同的2D方法。

2D卷积的一般原理是在图像(实际上是另一个2D矩阵)上传递内核(2D矩阵)。对于每次计算,内核均以输入图像的像素为中心,并对每个内核值(称为权重)与其当前对齐的像素执行乘法运算。这些乘法的总和给出了原始图像像素的特定卷积结果。然后将内核移至下一个像素,并重复该过程。

经过训练的内核,2D卷积生成一个输出结果图像,突出显示输入图像的特定特征,例如垂直线,水平线,变化角度的对角线和变化半径的曲线。然后可以将这些特征输入到其他处理层(包括其他2D卷积),然后可以将其标识为(通常在软件中)为特定对象。

因此,二维卷积处理不应被视为图像识别的完整解决方案,而应被视为处理操作链中的单个关键组件。

乘法密度

2D卷积的挑战是所需的乘法数量,这就是MLP中专用的乘法器阵列。对于AlexNet配置,每个内核为11×11= 121个权重值。但是,卷积实际上是3D的,因为输入图像具有三层(RGB),因此一组内核有121×3 = 363个乘法来产生单个输出结果。AlexNet输入图像为227×227;但是,此图像的stride为4(在计算之间内核移动了四个像素)。此过程导致输出结果矩阵为54×54 = 2916个结果。因此,对于一幅图像需要363×2916 = 1,058,508次乘法;即处理一个图像需要进行一百万次以上的累加运算。其中单个Kernel进行2D卷积的动态示意图如下:

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 1 单个Kernel进行2D卷积的动态示意图

对于MLP_Conv2D,其设计旨在一次处理一幅图像中的60个内核,单次执行超过6000万次乘法累加操作。

性能

MLP_Conv2D设计可以以750 MHz的频率运行。单个MLP能够在137 µs内对具有11×11内核的单个227×227 RGB输入图像进行卷积,相当于每秒15.4GOPS(包含乘和加)。 但一个MLP_Conv2D实例由60个并行运行的MLP构成,可以同时对60个输入图像进行卷积,相当于924GOPS。 最后,将多达40个MLP_Conv2D实例化到单个器件中,每个实例都通过自己的NAP将数据传输到GDDR6存储器,从而实现了组合高达37 TOPS的性能-相当于每秒处理28,8000张图像(本设计主要针对卷积核)。

资源

MLP_Conv2D围绕MLP和BRAM块功能而设计,并使用它们各自的内部级联走线。 同样,NAP允许直接从外部存储器路由数据互联。这些功能可实现最小的附加逻辑或路由要求,利用率表如下:

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 2 单个MLP_Conv2D实例资源使用

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 3 并行40个MLP_Conv2D实例资源使用

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 4 MLP_Conv2D框图

数据流:单个MLP

每个MLP都有一个邻近的BRAM。 在此设计中BRAM用于存储内核并将其多次传递到MLP。 初始化时,将从输入NAP中读取不同的内核,并将其写入相应的BRAM。 BRAM在写侧配置为72位,而读取设置为144位。在操作期间,仅将96位用作内核权重,即读取为4个权重×3层×8位。初始图像数据从NAP读取到输入FIFO中,该输入FIFO用于将图像存储为一系列行。尽管此输入存储器被列为FIFO,但仍可作为可重复读取的FIFO,因为可以多次从中读取行。该存储器配置为144位宽,仅使用96位,由两个BRAM72K组成。每个字由4个像素×3层×8位组成。初始化时,将读取足够的行以匹配内核中的行数加上垂直跨步所需的行数。即

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

一旦加载了初始数据和内核,便开始计算。

从输入FIFO中读取第一条图像行,并读取与内核水平大小匹配的图像数据像素数量。在读取这些像素时,将读取匹配的内核权重。MLP将这些96位流的每一个乘以12个int8值并累加结果。输入FIFO前进到第二行,重复此过程,直到内核的所有行都与输入图像左上角的适当像素相乘。在此过程中,MLP积累了结果;现在,该结果是图像与内核卷积的左上角的2D卷积。该结果以16位结果的形式从MLP输出。重复此过程,输入FIFO跨行超前STRIDE参数设置的像素数(对于当前设计,STRIDE固定为4)。在每个处理周期包括在内时,都会生成另一个结果,直到水平地获取了适当数量的结果为止。

然后,将输入FIFO下移STRIDE行数,然后重复该过程以生成输入图像中下一组线的卷积结果。当输入FIFO向下移动时,不再需要FIFO中的初始行,因此与MLP计算并行时,将加载下一组用于输入图像的STRIDE行。考虑外部存储源的带宽要求时,可以看到映像和内核仅从内存中读取一次。然后,它们可以从各自的BRAM中重新使用,从而减少了外部存储器带宽的总体负担,其过程参考图表1。

数据流:多个MLP

MLP的一个显著特点是能够将数据和结果从一个MLP或BRAM级联到同一列中。 MLP_Conv2D通过将MLP及其关联的BRAM放在列组中来利用这些级联路径。在将BRAM加载到内核时,级联路径用于将数据流水线传输到每个BRAM,并且使用BRAM块地址模式选择要写入内核的BRAM。

在计算过程中,输入的图像数据将在MLP的列中级联,以便每个MLP在其下一个邻居之后的一个周期接收到图像数据。同时,控制内核读取的BRAM读取地址以一个周期的延迟级联到BRAM列中。这样,每个MLP在其先前的MLP之后一个周期接收相同的图像数据和相同的内核读取地址。每个MLP的计算差异在于,其关联的BRAM将具有不同的内核数据。结果是一个图像并行地与多个内核卷积。并行卷积的数量称为BATCH。

数据流:计算结果

如前所述,每个MLP为内核和图像部分的每个卷积生成16位结果。

MLP排列在16列中,因此从该列中生成一个256位字,该字由该列中每个MLP的结果组成。然后将此256位字写入输出NAP。 这种安排导致卷积结果作为同一图像的图层存储在内存中;因此,当三层或RGB存储在单个输入字中时,匹配输入字排列。

然后,由于可以在完整的256位结果上的16个并行实例中执行激活功能,因此该安排允许将涉及的结果并行处理到激活层中。同样,一旦256位结果通过输出NAP写回到存储器中,则可以将结果读回到另一个2D卷积电路中。

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 5 MLP_Conv2D布局示意图

布局

在Speedster7t架构中,每个NAP对应32个MLP。该设计经过优化,可使用两个NAP,一个用于读取,一个用于写入,因此可以对应64个MLP。

但是,输入和输出FIFO需要两个BRAM 72K存储块才能创建一个256位宽的组合存储器。因此,这些存储器将消耗64个可用位置中的四个用于数据I / O。

设计被安排为使用与两个NAP相关联的四列MLP。但是,第一列和最后一列都使用14个MLP,剩下两个MLP位置分别用于输入和输出FIFO。中间两列使用所有16个可用的MLP。在平面图中,各列的排列方式是使第一列(底部具有输入FIFO存储器)与NAP相邻,以改善时序。

下面显示了一个实例,即使用了60个MLP(Batch=60)的设计实际布局图(突出显示了路线):

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 6 60个MLP布局图

在全芯片构建中使用40个实例时,尽力使每个实例都使用NAP与内存进行通信。结果,FMax仍能达到750MHz,并使用掉芯片中的所有80个NAP以及94%的MLP和BRAM72K。

实测!AlexNet卷积核在FPGA占90%资源仍跑750MHz|算力达288万张图像/秒

图表 7 2400个MLP布局图

下一期将举例介绍MLP的浮点架构和性能,敬请期待。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭