当前位置:首页 > 单片机 > 单片机
[导读]5G手机信号强弱受多方面影响,其中一方面是手机离宏基站的距离,宏基站就是我们常看到的信号塔,我们手机离基站越近,信号就越强,反之就越弱。

大家可能并不陌生,手机信号要想强,不仅要离基站距离近,而且这之间还不能有太多干扰,比如像城市高大的建筑物较多、农村高大的山坡较多、工业上各种电磁设备等这些干扰,就会使信号衰减变弱。

5G手机信号强弱受多方面影响,其中一方面是手机离宏基站的距离,宏基站就是我们常看到的信号塔,我们手机离基站越近,信号就越强,反之就越弱。

另一方面是宏基站与手机之间信号传输是否通畅,这也会影响到5G信号强度。

当然还有更重要的一方面,那就是手机基带芯片的性能。不同的厂家、不同性能的芯片接收信号能力也不同。这种现象可能在我们日常生活中都会有注意到,不同的手机在同一地方信号强度可能就不同。

那么搭载麒麟990 5G SOC的荣耀30 Pro+和搭载骁龙865芯片的5G手机在同一个地方,其5G信号强度到底会有什么样的表现呢?

为了测试两台手机的5G信号强度,我们选择了一处具备典型测试条件的场景:电梯里。

通常情况下电梯的信号不够理想,因为电梯属于封闭空间,电梯门一般都是金属材质,无线信号以及接收无线信号的设备终端如果不够强,无法在电梯内部接收信号。对于室外宏基站而言更难法穿透电梯的金属层而覆盖到电梯内部,十分考验手机终端的能力。

实测场景:电梯里

在这种场景下,荣耀30 Pro+的5G信号强度仍然表现出高端水平,具体测试结果如下:

RSSI=-55;RSRP=-75;RSRQ=-31;SINR=-10.0;

某骁龙865手机的信号强度如下:

RSSI=-67;RSRP=-116;RSRQ=-20;SINR=-3.0;

荣耀30 Pro+

某骁龙865手机

根据运营商的测试要求:

极好点: RSRP>-85dBm;

好点: RSRP=-85~-95dBm;

中点: RSRP=-95~-105dBm;

差点: RSRP=-105~-115dBm;

极差点: RSRP<-115dBm;

RSRP全称为“Reference Signal Receiving Power(参考信号接收功率)”,这是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功率的平均值。

整体而言,这些值越大越好。从测试数据来看,荣耀30 Pro+的信号强度处于极好的区间,而竞品骁龙865手机的信号强度位于极差区间。对比之下,荣耀30 Pro+拥有非常明显的优势。

基于在5G领域的技术积累,荣耀30 Pro+搭载的麒麟990 5G SOC全面升级5G通信实力。在5G信号较弱的场景下,麒麟990 5G推出智能上行分流设计,上传速率提升5.8倍,优化5G上行体验。

而且荣耀30 Pro+搭载了HiSignal技术,这是一种弱信号优化技术,可针对信号不佳的死角、电梯、地铁、地下商场等优化,常规测试降低30%,5G双卡手机游戏卡顿率较竞品低80%,针对一些弱信号、高延时的使用场地进行优化。

与此同时,麒麟990 5G SOC支持基于机器学习的自适应接收机,实现更精准的信道测量以及更稳定的5G连接。

更重要的是,荣耀30 Pro+在实现稳定的5G网络连接的同时,其功耗控制也表现优秀,这主要得益于BWP(Bandwidth Part)技术。

据悉,为解决5G带来的功耗问题,荣耀30 Pro+搭载的麒麟990 5G SOC率先支持BWP(Bandwidth Part)技术,在5G大带宽条件下实现带宽资源的灵活切换,与业界主流旗舰芯片相比,5G功耗表现优44%。

值得一提的是,荣耀30 Pro+支持SA、NSA双组网,未来运营商网络建设将核心网从NSA换成SA,消费者也可以无缝切换。

另外,而且荣耀30 Pro+支持中国三大运营商的5G全网通,包括n1/n3/n41/n77/n78/n79等频段,同时支持智慧双卡功能。卡1进行移动数据传输时,如果卡2收到来电并接通VoLTE电话,这时卡1可以继续5G数据业务,卡2的VoLTE电话也可正常进行。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭