当前位置:首页 > 电源 > 电源电路
[导读]PLC很多人都知道,那么你知道NPN和PNP的区别及应用吗?在工业控制领域一般受限于国外PLC类型的选择,选择了日系PLC和德系PLC选择了两种不同的控制接口,对于这两种接口,很多时候我们对其概念很模糊,在这里将详细阐述两者的区别。

PLC很多人都知道,那么你知道NPN和PNP的区别及应用吗?在工业控制领域一般受限于国外PLC类型的选择,选择了日系PLC和德系PLC选择了两种不同的控制接口,对于这两种接口,很多时候我们对其概念很模糊,在这里将详细阐述两者的区别。

三极管中的重要元件,NPN和PNP的区别

日系PLC的接口一般为NPN型(漏型输出),即集电极开路输出方式,由于日本人比较谨慎,免责申明做的比较好,所以它一般喜欢控制地GND,电源是你给的,烧了东西算你的。德系PLC的接口一般为PNP型(源型输出),即控制Power方式,由于德国人比较喜欢主动权把握在自己手里,我给你Power了你才能动作,不给你Power是比较安全的,你想烧东西没有Power怎么烧?

NPN和PNP到底有哪些不同呢?

1、NPN和PNP主要是电流方向和电压正负不同。

NPN:是由两个N型半导体和一个P型半导体组成。

PNP:是由两个P型半导体和一个N型半导体组成。

2、电流方向

NPN 是用 B→E 的电流(IB)控制 C→E 的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即 VC > VB > VEPNP 是用 E→B 的电流(IB)控制 E→C 的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即 VC < VB < VE

3、电压区别

NPN基极高电压,集电极与发射极短路。低电压,集电极与发射极开路。也是不工作。PNP基极高电压。集电极与发射极开路,也是不工作。如果基极加低电位,集电极与发射极短路。

工作原理:

晶体三极管按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)基极区的多数载流子(空穴)很容易地越过发射结互相向对方扩散。

但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:Ie=Ib+Ic

这是说,在基极补充一个很小的Ib,可以在集电极上得到一个较大的Ic,这是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib

式中:β1--称为直流放大倍数,

集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib

式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

同理,PNP三极管则主要是形成空穴电流,其余原理基本相近。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。以上就是NPN和PNP的区别及应用,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭