当前位置:首页 > > 21ic电子网
[导读]说起基带和射频,相信大家都不陌生。它们是通信行业里的两个常见概念,经常出现在我们面前。 不过,越是常见的概念,网上的资料就越混乱,错误也就越多。这些错误给很多初学者带来了困扰,甚至形成了长期的错误认知。 所以,我觉得有必要写一篇文章,对基带和


说起基带射频,相信大家都不陌生。它们是通信行业里的两个常见概念,经常出现在我们面前。


不过,越是常见的概念,网上的资料就越混乱,错误也就越多。这些错误给很多初学者带来了困扰,甚至形成了长期的错误认知。


所以,我觉得有必要写一篇文章,对基带和射频进行一个基础的介绍。


现在都流行“端到端”,我们就以手机通话为例,观察信号从手机到基站的整个过程,来看看基带和射频到底是干什么用的。


当手机通话接通后,人的声音会通过手机麦克风拾音,变成电信号。这个电信号,是模拟信号,我们也可以称之为原始信号。


基带、射频,到底是干什么用的?
声波(机械波)转换成电信号

此时,我们的第一个主角——基带,开始登场。

基带,英文叫Baseband,基本频带。

基本频带是指一段特殊的频率带宽,也就是频率范围在零频附近(从直流到几百KHz)的这段带宽。处于这个频带的信号,我们成为基带信号。基带信号是最“基础”的信号。

现实生活中我们经常提到的基带,更多是指手机的基带芯片、电路,或者基站的基带处理单元(也就是我们常说的BBU)。


基带、射频,到底是干什么用的?
回到我们刚才所说的语音模拟信号。

这些信号会通过基带中的AD数模转换电路,完成采样、量化、编码,变成数字信号。具体过程如下如所示:

基带、射频,到底是干什么用的?
上图中的编码,我们称之为 信源编码

信源编码,说白了,就是把声音、画面变成0和1。在转换的过程中,信源编码还需要进行尽可能地压缩,以便减少“体积”。

对于音频信号,我们常用的是PCM编码(脉冲编码调制,上图就是)和MP3编码等。在移动通信系统中,以3G WCDMA为例,用的是AMR语音编码。

对于视频信号,常用的是MPEG-4编码(MP4),还有H.264、H.265编码。大家应该也比较熟悉。

除了信源编码之外,基带还要做 信道编码

基带、射频,到底是干什么用的?
编码分为信源编码和信道编码

信道编码,和信源编码完全不同。信源编码是减少“体积”。信道编码恰好相反,是增加“体积”。

信道编码通过增加冗余信息,对抗信道中的干扰和衰减,改善链路性能。

举个例子,信道编码 就像在货物边上填保护泡沫。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。

基带、射频,到底是干什么用的?

去年联想投票事件里提到的Turbo码、Polar码,LDPC码,还有比较有名的卷积码,全部都属于信道编码。

除了编码之外,基带还要对信号进行加密。

接下来的工作,还是基带负责,那就是 调制

调制,简单来说,就是让“波”更好地表示0和1。

基带、射频,到底是干什么用的?

最基本的调制方法,就是调频(FM)、调幅(AM)、调相(PM)。如下图所示,就是用不同的波形,代表0和1。


基带、射频,到底是干什么用的?
现代数字通信技术非常发达,在上述基础上,研究出了多种调制方式。例如 幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的 QAM(发音是“夸姆”)

为了直观表达各种调制方式,我们会采用一种叫做 星座图的工具。星座图中的点,可以指示调制信号幅度和相位的可能状态。

基带、射频,到底是干什么用的?

基带、射频,到底是干什么用的?
星座图

基带、射频,到底是干什么用的?
16QAM示意图
(1个符号代表4个bit)

调制之后的信号,单个符号能够承载的信息量大大提升。现在5G普遍采用的256QAM,可以用1个符号表示8bit的数据。

基带、射频,到底是干什么用的?
256QAM

好了,基带的活儿总算是干完了。接下来该怎么办呢?

轮到射频登场了。

射频,英文名是Radio Frequency ,也就是大家熟悉的RF。从英文字面上来说,Radio Frequency是无线电频率的意思。严格来说,射频是指频率范围在300KHz~300GHz的高频电磁波。

大家都知道,电流通过导体,会形成磁场。交变电流通过导体,会形成电磁场,产生电磁波。
基带、射频,到底是干什么用的?
频率低于100kHz的电磁波会被地表吸收,不能形成有效的传输。频率高于100kHz的电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。

基带、射频,到底是干什么用的?

这种具有远距离传输能力的高频电磁波,我们才称为射频(信号)。

和基带一样,我们通常会把射频电路、射频芯片、射频模组、射频元器件等产生射频信号的一系列东东,笼统简称为射频。

所以,我们经常会听到有人说:“XX手机的基带很烂”,“XX公司做不出基带”,“XX设备的射频性能很好”,“XX的射频很贵”……之类的话。

基带送过来的信号频率很低。而射频要做的事情,就是继续对信号进行调制,从低频,调制到指定的高频频段。例如900MHz的GSM频段,1.9GHz的4G LTE频段,3.5GHz的5G频段。

基带、射频,到底是干什么用的?
射频的作用,就像调度员

之所以RF射频要做这样的调制,一方面是如前面所说,基带信号不利于远距离传输。

另一方面,无线频谱资源紧张,低频频段普遍被别的用途占用。而高频频段资源相对来说比较丰富,更容易实现大带宽。

再有,你也必须调制到指定频段,不然干扰别人了,就是违法。

在工程实现上,低频也不适合。

根据天线理论,当天线的长度是无线电信号波长的1/4时,天线的发射和接收转换效率最高。电磁波的波长和频率成反比(光速=波长×频率),如果使用低频信号,手机和基站天线的尺寸就会比较大,增加工程实现的难度。尤其是手机侧,对大天线尺寸是不能容忍的,会占用宝贵的空间。

信号经过RF射频调制之后,功率较小,因此,还需要经过 功率放大器的放大,使其获得足够的射频功率,然后才会送到天线。

信号到达天线之后,经过 滤波器的滤波(消除干扰杂波),最后通过 天线振子发射出去。


基带、射频,到底是干什么用的?


电磁波的传播

基站天线收到无线信号之后,采取的是前面过程的 逆过程——滤波,放大,解调,解码。处理之后的数据,会通过承载网送到核心网,完成后面的数据传递和处理。

以上,就是信号大致的变化过程。注意,是大致的过程,实际过程还是非常复杂的,还有一些 中频之类的都没有详细介绍。

我把大致过程画个简单的示意图如下:

基带、射频,到底是干什么用的?

怎么样,是不是相当于重温了一遍我们的《通信原理》?事实上,大家会发现,现实中的情况,和我们书本上的内容,还是有很大出入的。

哈哈,好啦,今天的内容就到这里。

最后给大家出几个思考题,欢迎大家在评论区给出你的答案!

思考题:
1、射频模块送到天线的信号,是数字信号还是模拟信号?
2、手机基带送到射频的信号,是基带信号吗?
3、信号到达基站后,除了信道解码之外,要不要做信源解码?




免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭