当前位置:首页 > 显示光电 > 显示光电
[导读]易锐光电发明的光模块,得到了满足MWDM波长范围的光模块,放宽了激光器芯片的波长范围,降低了光模块的功耗水平,提高了激光器芯片的良率!

易锐光电发明的光模块,得到了满足MWDM波长范围的光模块,放宽了激光器芯片的波长范围,降低了光模块的功耗水平,提高了激光器芯片的良率!

中国移动于2019年9月3日首次公开提出创新的5G前传Open-WDM/MWDM方案,5G前传将重用低成本25G CWDM DML推进12波长系统。

在现有CWDM6波的基础上,通过TEC控温每个波长左右各调偏3.5nm,构成12个波长通道,同时满足5G部署的急迫性和重用CWDM产业链的需求。采用TEC偏移实现12个波长,并具有波长非等间距的特点,结合光层调顶实现光模块OAM机制,满足5G前传10km主要场景链路预算。

但采用TEC控温存在如下缺点:12波都需要TEC控温,增加了制备光模块的成本;通过TEC控温每个CWDM波长偏离3.5nm,相应的温度大约需要调节35℃,在5G前传光模块需要满足工业级温度范围-40℃-85℃下工作的要求,激光器芯片的热沉温度变化接近100℃,在此温度范围内通过TEC控温保障波长稳定,对TOSA的热管理和功耗是巨大挑战。

另外,直接从现有的CWDM6波基础上挑选合格的芯片,通过TEC调节温度实现波长调谐,会导致单片wafer的DML激光器波长良率较低,间接提高了激光器芯片的成本。

为了解决这样的问题,易锐光电在19年12月26日申请了一项名为“光模块”的发明专利(申请号:201911361761.9),申请人为易锐光电科技(安徽)有限公司。

根据目前公开的专利资料,让我们一起来看看这项光模块技术吧。

集成了加热单元的DML芯片,脊波导1是通过等离子体干法刻蚀和湿法腐蚀相结合的方式得到的半导体倒台结构,其顶上覆盖有钛/铂/金三层金属材料,并和芯片P面电极11是连通的。

芯片P面电极和加热单元2形成在钝化层3上,加热单元与脊波导之间的距离为10um并且加热单元与脊波导之间设置有绝缘层,也就是钝化层。给加热单元通电时,钝化层具有将加热单元和脊波导之间电绝缘的作用,其主要结构是二氧化硅,当然也可以使用其他更好的材料当作绝缘材料。

加热单元是由钛金属形成的热电阻,由于钛的电阻率远高于金和铂,因此选用钛作为热电阻的电阻材料。为了缓解加热单元对DML激光器波长调谐能力的不足,光模块还包括设置在壳体内部用以给壳体内部进行温度补偿的加热模块,在环境温度较低时,加热单元和加热模块二者同时工作满足DML激光器中心波长在宽温度范围内的波长调谐。

此外,光模块还包括用以检测壳体温度的温度传感器和与温度传感器、加热单元、加热模块信号连接的温度控制单元。温度控制单元根据温度传感器检测到的壳体温度值控制加热单元、加热模块共同启动或者关闭,控制加热单元、加热模块单个启动或关闭。

这种将模块壳体内部的加热模块和激光器芯片上集成的加热单元相结合的二级加热方式,实现了DML激光器芯片波长的大范围温度调谐。激光器芯片上集成的加热单元位于脊波导一侧,由于加热单元距离DML激光器芯片的有源区较近,故温度传递快,导热效率高,因此能够用较小的电功率实现较大的波长调谐范围,降低了光模块的功耗水平。

用于光模块的温度补偿控制方法为:首先,温度传感器采集当前壳体温度值,基于温度传感器采集到的壳体温度值,温度控制单元判断壳体温度值是否低于预设温度阀值。

如果低于预设温度阀值,则控制加热单元、加热模块启动;如果介于预设温度阀值,则控制加热单元启动,加热模块关闭;如果壳体温度值高于预设温度阀值,则控制加热单元、加热模块关闭。

预设温度阀值为壳体内部的温度在-5℃-45℃范围,当光模块的壳体内部温度高于45℃时,加热单元和加热模块关闭,此时激光器的波长只由光模块内的温度和激光器的驱动电流决定,波长调谐范围设计值为5nm。

当光模块的壳体内部温度介于-5℃-45℃之间时,加热单元开启,加热模块关闭,此时通过调节加热单元的电流,对激光器的波长进行调谐,加热单元对激光器的波长调谐范围设计值为5nm。

光模块的壳体内部温度低于-5℃时,加热单元和加热模块均同时开启对激光器的波长进行调谐,加热模块的波长调谐范围设计值为4nm。

以上就是易锐光电发明的光模块,通过在激光器芯片内集成有给激光器芯片进行温度补偿的加热单元,来实现对激光器芯片的中心波长进行调谐,因而得到上述功能需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭