当前位置:首页 > 汽车电子 > 汽车电子技术文库
[导读] 自动驾驶汽车的路径规划算法最早源于机器人的路径规划研究,但是就工况而言却比机器人的路径规划复杂得多,自动驾驶车辆需要考虑车速、道路的附着情况、车辆最小转弯半径、外界天气环境等因素。 本文

自动驾驶汽车的路径规划算法最早源于机器人的路径规划研究,但是就工况而言却比机器人的路径规划复杂得多,自动驾驶车辆需要考虑车速、道路的附着情况、车辆最小转弯半径、外界天气环境等因素。

本文将为大家介绍四种常用的路径规划算法,分别是搜索算法、随机采样、曲线插值和人工势场法。

1.搜索算法

搜索算法主要包括遍历式和启发式两种,其中Dijkstra算法属于传统的遍历式,A*算法属于启发式,在A*算法的基础上,还衍生出了D*Lite算法、Weighted A*算法等其他类型。Dijkstra算法最早由荷兰计算机学家狄克斯特拉于1959年提出,算法核心是计算从一个起始点到终点的最短路径,其算法特点是以起始点开始向周围层层扩展,直到扩展到终点为止,再从中找到最短路径,算法搜索方式如图(1-1)所示。A*算法在Dijkstra算法上结合了最佳优先算法,在空间的每个节点定义了一个启发函数(估价函数),启发函数为当前节点到目标节点的估计值,从而减少搜索节点的数量从而提高效率。A*算法中的启发函数

包括两部分,表示从初始点到任意节点n的代价,表示节点n到目标点的启发式评估代价,在对象从初始点开始向目标点移动时,不断计算的值,从而选择代价最小的节点。一般来说遍历式算法可以取得全局最优解,但是计算量大,实时性不好;启发式算法结合了遍历式算法以及最佳优先算法的优点,具有计算小、收敛快的特点。图(1-2)是最佳优先算法示意图,可以看出该算法有一定的选择性,但是面对图中的u型障碍物会出现计算效率低的情况。而A*算法完美的结合了Dijkstra算法和最佳优先算法,不仅有一定的选择性,并且计算量相对也是最少的,更快得找到了最短路径。

图1-1 Dijkstra算法示意图

图1-2 最佳优先算法示意图

图1-3 A*算法示意图

2.随机采样

随机采样主要包括蚁群算法以及RRT(快速扩展随机树)算法。蚁群算法是由Dorigo M等人于1991年首先提出,并首先使用在解决TSP(旅行商问题)上。其算法基本原理如下:1.蚂蚁在路径上释放信息素。2.碰到还没走过的路口,随机选一条走,同时释放与路径长度有关的信息素。3.信息素浓度与路径长度成反比。后来蚂蚁再次碰到该路口时,就选择信息浓度较高的路径。4.最优路径上的信息素浓度越来越大。5.信息素浓度最大的路径为最优路径。其在小规模TSP中性能尚可,再大规模TSP问题中性能下降,容易停滞。实际道路环境是比较复杂的,不光有道路、障碍物等的限制,也有其自身动力学的约束,所以该算法更适合做全局路径规划,不太适合局部路径规划。

图2-1 蚁群算法示意图

3.曲线插值

曲线插值的方法是按照车辆在某些特定条件(安全、快速、高效)下,进行路线的曲线拟合,常见的有贝塞尔曲线、多项式曲线、B样条曲线等。一般就多项式算法而言,主要考虑以下几个几何约束,从而确定曲线的参数。几何约束:1.起始点的位置与姿态。2.最小转弯半径。3.障碍物约束。4.目标点的位置与姿态。根据考虑的几何约束不同,多项式算法的阶数从三阶到六阶甚至更高阶,阶数越高的算法复杂度越高,收敛速度越慢。四次多项式的形式如式(3-1)所示,参数由几何约束条件确定。基于参数化曲线来描述轨迹,这种类型的算法比较直观,也可以更加准确的描述车辆所需满足的道路条件,规划出的轨迹也十分平坦、曲率变化连续并可进行约束。缺点是计算量较大,实时性不太好,并且其评价函数也比较难以找到最优的,未来的研究方向主要集中于简化算法以及更加完善的评价函数。目前,曲线拟合算法是采用比较广泛的规划方法。

(3-1)

4.人工势场法

人工势场法(Artificial PotentialField,APF)是由KhaTIb于1986年提出的。该算法是假设目标点会对自动驾驶车辆产生引力,障碍物对自动驾驶车辆产生斥力,从而使自动驾驶车辆沿“势峰”间的“势谷”前进。这种算法的优点就是结构简单,有利于底层控制的实时性,可大大减少计算量和计算时间,并且生成相对光滑的路径,利于保持自动驾驶车辆的稳定性。算法的缺点是有可能陷入局部最优解,难以对规划出的路径进行车辆动力学约束,复杂环境下的势场搭建也比较棘手。势场的基本步骤如下:首先搭建势场,包括障碍物势场以及目标点势场,然后通过求势场负梯度,可以得到车辆在势场中所受的障碍物斥力以及目标点引力。将所受的所有障碍物斥力与目标点引力叠加,就可以得到车辆在势场中任意位置的受力情况,最后根据合力情况不断迭代更新位置,就可以得到从起始点到终点的完整路径。

图4-1 基于人工势场法搭建的势能场

图4-2 基于人工势场法规划的路径点

最后以下表对本文介绍的四种算法的优缺点、计算效率进行一个简要的对比总结。不难发现,其中人工势场法的计算速度最快,实时性也最好,但是存在局部最优解、复杂势场难以搭建的情况,这也是未来该算法的研究热点、难点;其中,曲线插值是目前较常见的一种算法,虽然该算法的计算效率不高,但是相信在未来车载计算机的计算能力大幅度提升之后,该算法可以被更广泛得使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭