当前位置:首页 > > 21ic电子网
[导读]作者:Jung_zhang 链接:https://www.cnblogs.com/jungzhang/p/5547348.html 今天给大家分享几个C语言中的坑。 一、带参数的宏展开顺序 #include  #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main(void) {      printf("%s\n",h(f(

C语言中几个容易踩的“坑”!

作者:Jung_zhang
链接:https://www.cnblogs.com/jungzhang/p/5547348.html


今天给大家分享几个C语言中的坑。

一、带参数的宏展开顺序

#include <stdio.h>
#define f(a,b) a##b
#define g(a) #a
#define h(a) g(a)

int main(void)
{
     printf("%s\n",h(f(1,2)));
     printf("%s\n",g(f(1,2)));

     return 0;
}


运行结果:


12

f(1,2)


浅析:

本题中的#运算符可以利用宏参数创建字符串。##运算符和#运算符一样也可以用于类函数宏的替换部分。另外,##还可以用于类对象宏的替换部分,这个运算符可以把两个语言符号组合成单个语言符号,所以该运算符也被成为“预处理粘合剂”。类参数宏展开遵循一定的顺序,先从外层开始探寻如果遇到#即刻结束探寻,从遇到#处开始一步一步向外层展开,如果没有遇到#探寻到最里层结束探寻,然后一步一步向外层展开。


所以printf("%s\n",h(f(1,2)));这条语句的展开顺序为:h(f(1,2))(没有#)  --->>  f(1,2)(到达最里层依然没有#)  ---->>  h(12)  ---->>  12。


然而printf("%s\n",g(f(1,2)));这条语句的展开顺序是:g(f(1,2))(碰到#即刻结束探寻,开始展开)  ----->>f(1,2)。

二、类型转换

#include <stdio.h>
int main(void)
{
int a = -10;
unsigned b = 1;
if(a+b > 0)
printf("a + b > 0\n");
else if (a + b < 0)
printf("a + b < 0\n");
else
printf("a + b = 0\n");
return 0;
}


运行结果


a + b > 0


浅析:

第一眼看到这道题心里想到这不明摆着 -10 + 1 < 0么,如此easy的题目还要算吗?当程序运行出结果时顿时傻眼了,仔细看了看数据类型发现问题出在了类型的转换上。众所周知,在不同类型的数据进行运算时如果不进行特别的转换那么在数据运算时会先将表示范围较小的数据自动转换成表示范围更广的数,再参与运算,所以本题中会先将int型的a转换成unsigned int型,通过补码运算得知该值为:4294967286,该值加上1会肯定会远大于0,因此输出的是a+b>0。

三、溢出问题

程序一


unsigned i;
for (i = 110; i >= 0; i--)
  printf("%u\n",i);


运行结果:

死循环


浅析:

该题的坑就在于没有注意到unsigned int 的存储范围,当小于零溢出时又会从unsigned int 的最大值开始递减,这就仿佛进入了一个圆环,永远都没有办法找到跳出圆环形跑道的缺口。


程序二:


#include <stdio.h>
#include <string.h>
int main(void)
{
  char a[1000];
  int i;
  for(i = 0; i < 1000; i++)
    a[i] = -1 -  i;
  printf("%d\n",strlen(a));
  return 0;
}

运行结果:
255


浅析:
这道题看上去很简单但是却暗藏杀机,很少有人能够答对,当i从0开始自增,自增到127时-1 - 127 = -128,而这个数正好是char型变量所能表示的最小数字,i再自增一次就会溢出,变成char所能表示的最大数字,这样又进入了上一题的那个“环”,当i增加到255时-1 - i = 0,此时第一次出现了0,而strlen函数碰到'\0'就结束(不包括),因此输出结果为255。

四、strcpy函数

void test()
{
char str[10],str1[10];
int i;
for(i = 0; i < 10; i++)
  {
    str1[i] = 'a' + i;
  }
strcpy(str,str1);
}

浅析:
这段代码第一眼看过去是没问题的,但是再看一眼就能够很轻松找到错误了,strcpy函数是拷贝字符串的函数,它是以'\0'为结尾的,因此当程序运行strcpy这一行时会发生内存非法访问导致程序崩溃。

-END-


推荐阅读

【1】任正非要感谢特朗普 背后原因竟是这样 网友:犀利

【2】2020年美国对华为的打击或将升级,但任正非的一番话亮了!

【3】终于整理齐了,电子工程师“设计锦囊”,你值得拥有!

【4】半导体行业的人都在关注这几个公众号

C语言中几个容易踩的“坑”!

你和大牛工程师之间到底差了啥?
加入技术交流群,与高手面对面 
添加管理员微信

C语言中几个容易踩的“坑”!

加入“中国电子网微信群”交流

C语言中几个容易踩的“坑”!
具体加群详情请戳
“中国电子网技术交流群” 

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭