当前位置:首页 > 公众号精选 > 松哥电源
[导读]1、功率MOSFET常规的开关特性 功率MOSFET在开通的过程中,当VGS的驱动电压从VTH上升到米勒平台VGP时间段t1-t2,漏极电流ID从0增加系统的最大的电流,VGS和ID保持由跨导GFS所限制的传输特性曲线的关系,而VDS的电压保持不变,这一个时间区域称为di/dt,主要由


1、功率MOSFET常规的开关特性


功率MOSFET在开通的过程中,当VGS的驱动电压从VTH上升到米勒平台VGP时间段t1-t2,漏极电流ID从0增加系统的最大的电流,VGS和ID保持由跨导GFS所限制的传输特性曲线的关系,而VDS的电压保持不变,这一个时间区域称为di/dt,主要由栅极总电阻RG和Ciss电容所控制。其中,米勒平台VGP的电压由跨导GFS和负载电流所决定。


图1:功率MOSFET在开通的过程


功率MOSFET进入米勒平台后,在t2-t3期间,VGS的电压保持米勒平台VGP不变,漏极电流ID保持系统的最大的电流不变,VDS电压从最大的输入电压下降到0,这一个时间区域称为dV/dt,主要由栅极电阻RG和Crss电容所控制。


在这二段时间内,VDS电压和ID电流具有交叠,因此产生开关损耗。平面技术相比,超结结构的功率MOSFET开通过程中不同的地方在于:VDS电压从最大的输入电压下降到0时间,小于米勒平台时间,因此,用米勒平台时间计算开关损耗,会远远大于实际的开关损耗


另外,对于关断的过程,特别是新一代的超结结构的功率MOSFET,在一定的范围内,dV/dt、di/dt已经不受栅极驱动电路的控制,通过调整外部的栅极电阻,不能控制系统的dV/dt、di/dt。


2、超结结构的功率MOSFET零电压ZVS关断特性


通常,功率MOSFET的关断特性受栅极串联的电阻和Crss的控制,但是,新一代超结结构的功率MOSFET栅极电荷、Coss和Crss的非线性特性增加,在高压下电容变得非常小,在低压时电容又变得非常大,如果使用栅极电阻值比较小,最终导致关断过程和传统的模式具有不同的特性;而且,有些超结功率MOSFET的Coss会出现滞洄特性,以后文章会讲述这个问题。


关断过程中,VDS的斜率为:


在米勒平台处,dVDS/dt= dVGD/dt,CGD中产生的电流和栅极电阻RG的电流分别为:


其中,CDS为D、S极之间Coss和外加的电容总和;

CGD为G、D极之间Crss和外加的电容总和;

RG为栅极内部和外串的电阻总和;

VP为米勒平台电压。


关断过程中,当栅极驱动电阻值比较小,栅极放电的电流比较大,栅极电压VGS下降的速度非常快。通常情况下,米勒平台维持平台电压时, dVDS/dt在CGD中产生的电流应该等于栅极电阻的电流:


图2:关断过程中米勒平台状态的电流


新一代超结功率MOSFET关断时,米勒平台开始,VDS电压从0开始上升,但是VDS在0V以及较低的电压值时超结功率MOSFET的输出电容Coss非常非常大,负载电流对电容CDS充电的速度非常慢,VDS的电压上升非常慢dVDS/d非常低,就会导致VDS电压的变化提供给CGD的电流小于流过栅极驱动电阻的电流:


根据节点电流的原理,Ciss电容必须放电,维持节点电流的平衡,因此,VGS会快速的下降,导致功率MOSFET沟道快速的完全关断,沟道电流为0,而VDS电压仍然维持非常低的值;然后,几乎全部的负载电流继续对输出电容CDS充电。

 

因此,这种开关特性和常规的关断过程的机制不同,栅极驱动电路的栅极电阻参数,不能有效控制VDS电压的变化率,VDS电压的变化率主要受输出电容CDS和负载电流控制。


由上述公式,超结功率MOSFET沟道提前关断的条件为:


电容CGD和米勒平台电压也影响VDS电压变化。

 

由上面的公式,可以的到:


(1)、新一代超结功率MOSFET如果想用RG控制关断的dV/dt,RG必须增加到非常大的值,这又会导致开关的速度非常慢,增加开关损耗和延时开关。

 

(2)、增大CGD的值,也就是G、D外加并联电容,就可以使用较小的RG,来控制关断的dV/dt,这样一个比较优化的方法。


(3)、增大CDS的值,D、S外加并联电容方法来控制关断的dV/dt,其缺点是会增加开通的电流尖峰和dI/dt。

 

如果功率MOSFET流过的负载电流变化的范围大,不外加元件,在关断过程中,dV/dt、di/dt也会在很大的范围内变动,对对系统的EMI和器件可靠性带来问题。

 

另外可以发现,超结功率MOSFET关断的特性,非常接近于零电压开关ZVS的关断模式,就是VDS电压和ID电流具有交叠的时间非常短,图3展示了功率MOSFET的栅极驱动电阻值非常小的工作波形,从波形可以看到,关断的VDS和ID波形的交错区域非常小,类似于零电压开关ZVS的关断模式,因此关断损耗非常小,在硬开关的电源结构中,可以提高系统的效率。


当然,如果超结功率MOSFET的Coss具有滞洄特性,那么,相应的开关损耗就会产生滞洄损耗的特性,以后再讲述这个问题。


图3:功率MOSFET的栅极驱动电阻值非常小的工作波形


3、总结


新一代的超结结构的功率MOSFET的栅极驱动电阻值较小时,dV/dt主要受输出电容Coss和最大的负载电流的限制;di/dt随着负载电流的上升,以非常快的速度上升,在大的负载电流时,主要受外部的寄生电感和外部应用电路的限制。当栅极驱动电阻增加到非常大的值时,dV/dt开始部分受到驱动电路的限制,di/dt情况也基本类似。

 

新一代的超结结构的功率MOSFET通常需要外加电容和栅极电阻相配合,控制器件的开关速度,保持栅极驱动电路的电阻对器件关断过程的dV/dtdi/dt的可控或部分的可控,从而保证器件在极端的条件下工作在可靠的工作区,或满足系统EMI要求。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

稳压二极管型号通常由字母和数字组成,其中字母代表制造厂家或特定系列,数字代表器件的特性参数。以下是一些常见的稳压二极管型号:

关键字: 稳压二极管 额定电流 电压

逆变器作为光伏发电系统的核心设备,其作用是将光伏组件产生的可变直流电压转换为市电频率交流电,是光伏阵列系统中重要的系统平衡之一。

关键字: 逆变器 电压 电量

VGA接口主要用于将计算机的数字图像信号转换成模拟信号,从而可以在显示器上显示。这种接口通常包含15个针脚,分成3排,每排5个孔,可以传输红、绿、蓝三种基本颜色的信号以及水平和垂直同步信号。

关键字: vga接口 信号 电压

在日常生活和工业生产中,电压的稳定性对于各种电气设备的正常运行至关重要。然而,有时我们会遇到电压低的情况,这不仅会影响到设备的性能,还可能引发一系列问题。本文将对电压低的原因进行深入探究,并提出相应的应对措施。

关键字: 电压 电网

开关电源的输入电压如果过低或过高,都有可能导致不起振的情况。当输入电压过低时,电源无法启动,因为电源无法获得足够的能量来开关。

关键字: 开关电源 电压 电源

如果开关电源的输出电压低,可能是由于多种原因引起的故障。以下是一些可能的原因和对应的维修方法:

关键字: 开关电源 电压 励磁开关电源

电在日常生活、生产、科学研究等工作中得到了广泛应用,随处可见各种各样的电路,这些电路的特性和作用各不相同。下面简单介绍下一些基础电路知识。

关键字: 电路图 电流 电压

电压跟随器(Voltage Follower)是一种特殊类型的运放电路,输入和输出之间没有电压放大。

关键字: 电压跟随器 运放电路 电压

电压调制调速:这是最简单和常见的调速方法之一。通过改变电机的供电电压来控制电机的转速。降低电压可以降低电机的转速,增加电压可以增加电机的转速。这种方法适用于直流电机和某些交流电机。

关键字: 直流电机 调速 电压

随着电力系统的不断发展,电能已经成为现代社会不可或缺的能源。在电力系统中,三相电压平衡是保证系统稳定运行的重要条件之一。然而,在实际运行过程中,由于各种原因,三相电压往往会出现不平衡现象。本文将对三相电压不平衡的原因进行...

关键字: 三相电压 电压
关闭
关闭