当前位置:首页 > > 安森美
[导读]点击上方蓝字关注我们周六锁定“温温故,知知新”,获取我司技术知识速递——您发挥才能,我们提供工具!别忘了参与文末有奖活动哦!本篇文章节选自国际知名电源专家ChristopheBasso所著的《开关转换器动态分析采用快速分析技术》。本篇文章是此次系列文章的第二篇,此次系列文章共有三...



点击上方蓝字关注我们





周六锁定“温温故,知知新”,获取我司技术知识速递——您发挥才能,我们提供工具!别忘了参与文末有奖活动哦!

本篇文章节选自国际知名电源专家Christophe Basso所著的开关转换器动态分析采用快速分析技术》。本篇文章是此次系列文章的第二篇,此次系列文章共有三篇,第三篇将于下周六发布,欢迎大家持续关注~




温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

开关转换器动态分析采用快速分析技术(第二篇)



作者简介

Christophe Basso

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)


安森美半导体法国图卢兹 Technical Fellow


他拥有超过20年的电子电路设计经验,在电力电子转换领域拥有近30项专利,他原创了许多集成电路芯片,其中代表性为 NCP120X 系列,它重新定义了电源低待机功耗设标准。


Christophe Basso出版了多部著作,《开关模式 SPICE 仿真和实用设计》深受广大工程师的欢迎并二次改版,《为线性和开关电源设计控制回路:教程指南》为工程师设计补偿和环路稳定性提供了实用指南,《线性电路传递函数:介绍快速分析技术》以说教的方式,为学生和需要强大的工具以快速分析日常工作中的复杂电子电路的工程师提供对电路分析的不同角度。



文章链接
如果您还未阅读本系列文章的第一篇,点击下方链接即可跳转阅览

开关转换器动态分析采用快速分析技术 第一篇

开关转换器动态分析采用快速分析技术 一" tab="innerlink" data-linktype="2" rel="nofollow">

03

工作于DCM的带耦合电感的SEPIC

SEPIC是一种流行的结构,常用于输出电压必须小于或大于输入的应用,不会像采用Buck-Boost转换器那样损失极性。SEPIC可采用耦合或非耦合电感工作在连续导通模式(CCM)或非连续导通模式(DCM)。[9]中谈讨了耦合电感的好处,这里不作讨论。


我们的兴趣在于确定耦合电感的SEPIC 在工作于DCM时的输出到控制的传递函数。图11代表[10]中所述的自动切换电压控制模式的PWM开关和采用一个SEPIC配置的连接。特意减少载荷以强制实施DCM。在启动序列完成后施加一个临时步骤。在类似的工作条件下捕获并仿真一个逐周期电路。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十一

点击查看大图 △


翻译参考▽

Cycle-by-cycle simulation:逐周期仿真

Average model:平均模型


图11:第一个SEPIC采用平均模型,而右边第二个实施逐周期法。


运行一个仿真来比较两个电路的输出响应。如图12所示,两个电路的响应非常相近。曲线的左边描述了启动序列,右边部分显示了两个模型对负载阶跃的响应。在这一阶段具有相同的响应第一次表明平均大信号模型正确地仿真SEPIC内部,我们可进行小信号版本。

DCM PWM开关的大信号模型由(10)中推导出的小信号版本所代替,与[5]中描述的不同。两个模型得出了相同的分析,但Vorpérian博士在[5]中考虑的是一个常见的配置(C端是接地的),而我为了建立一个自动切换的DCM-CCM模型,保留了原普通无源配置。采用DCM PWM开关的小信号模型更新的电路图如图13所示。右边的参数列表计算分析所需的所有系数k。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十二

点击查看大图 △


图12:平均模型与逐周期模型的瞬态响应完全符合。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十三

点击查看大图 △


翻译参考▽

Parameters:参数


图13:这是工作在DCM模式的SEPIC的小信号模型。节点d1是占空比偏差和注入点。所有小信号系数都自动出现在参数窗口。



04

确定准静态增益

为了确定准静态增益,您需要照图2使所有电感短路,所有电容开路。这正是SPICE在计算工作偏置点时所做的工作。然后重新排列所有的源和组件以简化电路,使其更易于分析。


当您做这工作时,我建议您始终运行一个全面的检查,确定新电路的动态响应与图13完美匹配。任何偏差都表明您出了错,或者简化中的假设过于乐观:重复该做法直到幅值和相位完美匹配为止。组合出图14的电路。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十四

点击查看大图 △


图14:这是用来确定准静态增益H0的最终的直流电路。


几行代数将使我们得到输出电压表达式:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(20)

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(21)

将(20)中的Ic代入(21)并求解Vout。您应该得出

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(22)

该小信号准静态增益简单地表示为

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(22)



05

时间常数的确定

我们将采用FACTs并单独确定电路的时间常数,而不是用图13的完整原理立刻求解整个传递函数。这种方法提供了一个优势,以处理您通过对单个草图的SPICE仿真获得的结果。这大大有助于逐步前进和跟踪错误,而不至于在大量的工作时间后才发现最终的结果是错误的!


为了确定时间常数,将激励源减为0(请检查图2)。在此,由于我们想要控制到输出的传递函数,激励源是d1。将其减为0有助于简化电路,如图15所示。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十五

点击查看大图 △


图15:将激励源减为0有助于简化电路。在此我们从驱动电感L1的阻抗开始。


我们可以用几个公式来描述这个电路,我们知道IC=IT:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(24)

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(25)

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(26)

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(27)

您将(26)代入(27)然后解出V(c)。替代(26)中的V(c)解得V(a)。然后可写:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(28)

如果您重新排列和由图13的定义替换系数k,得出时间常数t1的定义:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(29)


二阶时间次常数指的是从C2端看到的阻抗,而L1是短路的。新的电路如图16所示。由于L1短路,a和c端在一起,简化更新的电路为右边的图片。


温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

图十六

点击查看大图 △


图16:使电感短路真正简化电路。


再一次,几个简单的方程会很快地让您得出结果:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(30)

将(30)代入(31),然后解得VT并重新整理。您应该发现:

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(31)

如果您知道试图确定涉及C3的三阶时间常数,变压器配置(完美耦合)使其两端电压等于0V:在动态传递函数中电容器不起作用。因此第一个系数b1定义为

温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

(32)


未完待续,下周六见...



References
参考文献

1. R. D. Middlebrook, Methods of Design-Oriented Analysis: Low-Entropy Expressions, Frontiers in Education Conference, Twenty-First Annual conference,  Santa-Barbara, 1992.

2. R. D. Middlebrook, Null Double Injection and the Extra Element Theorem, IEEE Transactions on Education, Vol. 32, NO. 3, August 1989.

3. V. Vorpérian, Fast Analytical Techniques for Electrical and Electronic Circuits, Cambridge University Press, 2002.

4. C. Basso, Linear Circuit Transfer Functions – An Introduction to Fast Analytical Techniques, Wiley,  2016.

5. V. Vorpérian, Simplified Analysis of PWM Converters Using the Model of the PWM Switch, Parts I and II, Transactions on Aerospace and Electronics Systems, vol. 26, no. 3, May 1990.

6. D. Feucht, Design-Oriented Circuit Dynamics, http://www.edn.com/electronics-blogs/outside-the-box-/4404226/Design-oriented-circuit-dynamics

7. D. Peter, We Can do Better: A Proven, Intuitive, Efficient and Practical Design-Oriented Circuit Analysis Paradigm is Available, so why aren't we using it to teach our Students?,

http://www.icee.usm.edu/ICEE/conferences/asee2007/papers/1362_WE_CAN_DO_BETTER__A_PROVEN__INTUITIVE__E.pdf

8. C. Basso, Fast Analytical Techniques at Work with Small-Signal Modeling, APEC Professional Seminar, Long Beach (CA), 2016, http://cbasso.pagesperso-orange.fr/Spice.htm

9. J. Betten, Benefits of a  coupled-inductor SEPIC, slyt411, application note, Texas-Instruments.

10. C. Basso, Switch-Mode Power Supplies: SPICE Simulation and Practical Designs, McGraw-Hill, 2nd edition, 2014.

11. D. Maksimovic, R. Erickson, Advances in Averaged Switch Modeling and Simulation, Power Electronic Specialist Conference Professional Seminar, Charleston, 1999













(向上滑动开启信封)

参与阅读有奖活动:


如果粉丝朋友们喜欢我司的技术文章,欢迎大家分享。参与本次阅读有奖活动,仅需点击阅读原文正确填写问卷,即可获得抽奖资格哦。









温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)


活动流程
我们将从参与活动的粉丝中,随机抽取 8位,赠送 8G四合一手机U盘。欢迎大家热情参与!

本次的阅读有奖活动,将在5月15日公布获奖名单。



活动时间
4月25日至5月11日



活动规则
活动期间,每个ID只有一次参加机会
奖品内容以最后收到的包裹为准
请如实填写信息,信息将用于寄送奖品
奖品将由快递寄送给获奖者

*本次活动由Archetype举办,最终解释权归Archetype所有
活动参与者将被默认为该参与者同意所提供的信息将根据安森美半导体隐私政策条款使用
安森美半导体及Archetype的员工、代理商/承包商/分包商的员工均没有参与此活动的资格



温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)
温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)
点击阅读原文,参与活动

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭