当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 由于,人工智能(AI)担负工作与目前大多数计算机的运算工作有些不同。然而,AI隐含着分析预测、推理、直观的能力与功能。实时是最有创意的机器学习算法也受到现有机器硬件能力的束缚。因此,若要在AI方

由于,人工智能(AI)担负工作与目前大多数计算机的运算工作有些不同。然而,AI隐含着分析预测、推理、直观的能力与功能。实时是最有创意的机器学习算法也受到现有机器硬件能力的束缚。因此,若要在AI方面取得长足进步,我们必须在硬件上进行改变,或是半导体材料上进行突破。演变从GPU开始,引入模拟设备(analog devices),然后演变成为具容错性量子计算机(fault tolerant quantum computers)。

现在从大规模分布式深度学习算法应用于图形处理器(GPU)开始将高速移动的数据,达到最终理解图像和声音。DDL算法对视频和音频数据进行训练,GPU越多表示学习速度越快。目前,IBM创下纪录:随着更多GPU加入能提升达到95%效率,就能识别750万个图像达到33.8%,使用256个GPU 于64个Minsky电源系统上。

自2009年以来,随着GPU模型训练从视频游戏图形加速器转向深度学习,使分布式深度学习每年以约2.5倍的速度发展。所以IBM曾于2017年IEEE国际电子设备会议(2017 IEEE International Electron Devices MeeTIng)针对应用材料发表Semiconductor Futurescapes: New Technologies, New SoluTIons,谈到需要开发哪些技术才能延续这种进步速度并超越GPU?

如何超越GPU

IBM研究公司认为,GPU的转变分为三个阶段进行:

1、首先将在短期内利用GPU和传统的CMOS构建新的加速器以继续进行;

2、其次将寻找利用低精密度和模拟设备(analog devices)来进一步降低功率和提高性能的方法;

3、然后进入量子计算时代,它可是一个机会,能提供全新的方法。

在CMOS上的加速器还有很多工作要做,因为机器学习模型可以容忍不精确的计算。正因为“学习”模型可以借助错误学习而发挥作用,然而,在银行交易是无法容忍有一些许的错误。预估,精准运算快速的趋势,到2022年每年以2.5倍在提高。所以,我们还有五年时间来突破模拟设备(analog devices),将数据移入和移出内存以降低深度学习网络的训练

时间。因此,analog devices寻找可以结合内存和运算,对于类神经演算的进展将是非常重要的。

类神经演算如同模拟脑细胞。神经元(neurons) 结构相互连接以低功率讯号突破von-Neumann的来回瓶颈(von-Neumann’s back-and-forth bottleneck),使这些讯号直接在神经元之间传递,以实现更高效的计算。美国空军研究实验室正在测试IBM TrueNorth神经突触系统的64芯片数组,专为深度神经网络推理和挖掘信息而设计。该系统使用标准CMOS,但仅消耗10瓦的能量来驱动其6400万个神经元和160亿个突触。

但相变化内存(phase change memory)是下一代内存材料,可能是针对深度学习网络优化的首款仿真器件。

进入量子时代 (quantum)

据IBM公司的研究论文,在Nature Quantum InformaTIon中展示了机器学习中量子的优势证明(“DemonstraTIon of quantum advantage in machine learning”),展示了只有五个超导量子位处理器,量子运算能够稳定减少达100倍运算步骤,并且比非量子运算更能容忍干扰的信息。

IBM Q的商业系统现在有20个量子位,并且原型50个量子位设备正在运行。它的平均时间为90μs,也是以前系统的两倍。但是容错系统在今天的机器上显示出明显的量子优势。同时,试验新材料(如铜相通的替代品)是关键 - IBM及其合作伙伴在IEDM上推出的其他关键芯片改进,以推进所有运算平台,从von Neumann到类神经及量子。

解决处理器到储存器的连接和带宽瓶颈,将为AI带来新的储存器架构,最终可能导致逻辑和储存器制造过程技术之间的融合。IBM的TrueNorth推理芯片就是这种新架构的一个例子,其中每个神经元都可以存取自己的本地储存器,并且不需要脱机存取储存器。

借助训练和推理形式的AI运算,必须推向边缘装置上(edge devices),例如:手机、智能手表等。因此,这将兴起由计算设备组成的网络系统。大多数这样的边缘装置会受到功率和成本的限制,所以他们的计算需求可能只能透过高度优化的ASIC来满足。现在,传统无晶圆厂半导体公司是否有能力提供这类型的ASIC或是否由AI芯片新创公司例如云端服务提供商,由谁主导目前还为时过早。

备注:*冯诺伊曼架构(von Neumann bottleneck):是一种将程序指令内存和数据存储器合并在一起的计算机设计概念架构,因此也隐约指出将储存装置与中央处理器分开的概念。在CPU与内存之间的流量(数据传输率)与内存的容量相比起来相当小,在现代计算机中,流量与CPU的工作效率相比之下非常小。当CPU需要在巨大的数据上执行一些简单指令时,数据流量就成了整体效率非常严重的限制,CPU将会在数据输入或输出内存时闲置。由于CPU速度远大于内存读写速率,因此瓶颈问题越来越严重。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭