当前位置:首页 > 物联网 > 区块链
[导读] 介 绍 在写智能合约时,我倾向于采取引导方式。即使它们旨在用于生产环境,我也使它们尽可能易于理解。我写的智能合约是可重用的,但是通常会针对每个特定的业务案例重新编写智能合约。 在

介 绍

在写智能合约时,我倾向于采取引导方式。即使它们旨在用于生产环境,我也使它们尽可能易于理解。我写的智能合约是可重用的,但是通常会针对每个特定的业务案例重新编写智能合约。

在本文中,我将讨论solidity智能合约中的三种许可方法。讨论这些方法的复杂性从高到低,这是您在项目中应考虑的顺序。 我提供了可用于每种方法的代码。

本文假定您可以轻松地编写智能合约,并使用继承和传递合约地址等功能作为参数。

简单方法— Ownable.sol

OpenZeppelin的Ownable.sol合同必须是最重用的合同之一。它在77行中实现:

1. 断言某人是智能合约所有者的逻辑。

2. 限制函数调用以继承智能合约的所有者的逻辑。

3. 将所有权转移到其他地址的逻辑。

在编写智能合约时,您会经常从Ownable继承。让我们来看一个如何使用Ownable的示例。想象一下,您想在智能合约中保留一个地址列表,但是您想成为唯一可以添加更多地址的列表。可以将其视为您信任的人的注册表。您可以执行以下操作:

contract Whitelist is Ownable {

mapping (address =》 bool) members;

constructor() public Ownable() {

}

function addMember(address _member)

public

onlyOwner

{

members[_member] = true;

}

}

从Ownable继承并在您的Ownable上调用其构造函数可确保将部署智能合约的地址注册为所有者。如果未通过注册为所有者的地址调用,则onlyOwner修饰符会使函数恢复。

部署此智能合约后,只有您或您指定的人可以将新成员添加到其中的列表中。

尽管有用,但很多时候Ownable还不够。 在给定时间只有一个地址可以成为所有者,只有所有者可以决定谁可以成为新所有者,您只能检查您是否是所有者,而不是其他人。

中级复杂方法— Whitelist.sol

Whitelist.sol保留一个地址列表,然后可用于限制功能或任何其他目的。它在功能上与OpenZeppelin的Roles.sol非常相似,尽管有一些重要差异。

Whitelist.sol仅具有三个功能:

funcTIon isMember(address _member) public view returns(bool);

funcTIon addMember(address _member) public onlyOwner;

funcTIon removeMember(address _member) public onlyOwner;

例如通过该智能合约,您可以保留一份已批准的利益相关者列表,这些利益相关者可能是令牌转移的唯一接收者。 您可以执行以下操作:

pragma solidity ^0.5.0;

import “@openzeppelin/contracts/token/ERC20/ERC20.sol”;

import “。./access/Whitelist.sol”;

contract ERC20Whitelisted is ERC20 {

Whitelist whitelist;

constructor(address _whitelistAddress) public {

whitelist = Whitelist(_whitelistAddress);

}

funcTIon transfer(address account, uint256 amount) public {

require(whitelist.isMember(account), “Account not whitelisted.”);

super._transfer(account, amount);

}

}

在上面的示例中,您还可以使ERC20Whitelisted继承自ERC20和Whitelist。 我很乐意讨论一些折衷方案。

简单的白名单功能可能非常强大。OpenZeppelin使用它们实现了许多ERC20和ERC721变体,并设法提供了超出我们大多数人所需的更多功能。在TechHQ,我们也仅使用白名单实施了CementDAO。

但是有时候,白名单也会落空。您可能需要有多个所有者才能拥有白名单。或者您可能需要管理许多重叠的白名单。对于这些情况,我们具有分层的角色合约。

高级复杂方法-RBAC.sol

我们开发了RBAC.sol,旨在提供与现代共享系统一样的多用户功能。

1. 有些角色不过是地址组。

2. 组成员资格只能由某些管理员角色的成员修改。

3. 可以在运行时创建新角色。

4. 可以验证角色成员身份。

在低层,我们使用用户选择的bytes32参数来标识角色。 通常,这些是可识别的短字符串,但是您也可以使用加密的值或地址。

角色本身是一组成员地址和admin角色的标识符。 有趣的是,我们不需要将角色的标识符存储在其自己的结构中。

struct Role {

bytes32 adminRoleId;

mapping (address =》 bool) members;

}

现在有两种方法可以添加新角色并验证角色是否存在:

function roleExists(bytes32 _roleId) public view returns(bool);

function addRole(bytes32 _roleId, bytes32 _adminRoleId) public;

并且管理成员的功能是相同的,只是现在必须指定相关角色:

function isMember(address _member, bytes32 _roleId) public view returns(bool);

function addMember(address _member, bytes32 _roleId) public;

function removeMember(address _member, bytes32 _roleId) public;

仅当调用者属于我们要添加成员的角色的管理员角色时,addMember和removeMember才会成功。

仅当调用者属于将管理所创建角色的角色时,addRole才会成功。

这些简单的规则将允许创建角色的层次结构,然后可将其用于实现具有不同权限级别或区域的复杂多用户平台。

进阶学习

为了进一步深入兔子洞,我建议从OpenZeppelin的这个问题开始。他们的代码库与我们的代码库没有什么不同,即使在我们选择采用其他方法的情况下,您也会发现大多数设计决策的透彻推理。他们在诸如ERC20Mintable之类的合约中使用Roles是一个很好的例子,可以替代Whitelist。

勇敢者的另一个资源是AragonOS ACL合约。界面一眼就可以看出他们决定走得更远:

function hasPermission(address who, address where, bytes32 what,

bytes how) public view returns (bool);

对于我们自己的@ hq20 / contracts包中的示例,我们使用本文中描述的三个级别的访问控制,因此,您也应该注意这一点。

结 论

对于智能合约的实现,最好仅实现所需的复杂性,而无需再实现任何复杂性。 在许可方面,存在三种不同的复杂性级别:

· 单用户

· 用户群

· 用户组的层次结构

您可以将Ownable.sol用于单个用户允许的系统。 您可以将@ openzeppelin/Roles.sol或@ hq20/Whitelist.sol用于需要组中权限用户的系统。对于需要组层次结构的系统,我们过去已成功使用@ hq20/RBAC.sol。

您将有自己的要求,并且需要权衡取舍。了解每个实现背后的设计决策将使您可以使用现有合约,也可以修改合约以供自己使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭