当前位置:首页 > 通信技术 > 移动通信
[导读] 1引言 随着Internet技术及移动通信技术的发展,人们对宽带移动通信系统的需求越来越大,而宽带移动通信系统的关键技术之一是自适应调制技术[1,2],即通过研究无线信道的衰落程 度、信

1引言

随着Internet技术及移动通信技术的发展,人们对宽带移动通信系统的需求越来越大,而宽带移动通信系统的关键技术之一是自适应调制技术[1,2],即通过研究无线信道的衰落程 度、信道流量等参数动态地改变调制方式,在任何时刻都使信道容量达到最大,从而提高信道的频谱利用率,并有效地提高信息传输速率。在TDMA/TDD系统中,自适应调制是通过瞬时载噪比及瞬时时延量进行估计,从而动态地控制系统传输的调制方式,据此特殊要求,可设计系统数据帧格式如图1所示[3]。

图1中:一帧包括4个上行突发块和4个下行突发块,共8.32 ms(一个上行或下行突发块为1.04 ms)。每个突发块由数据及前缀码、中缀码、后缀码组成。其中,R各为8个字节,为上行或 下行突发模块的同步码; P各为8个字节,为导频,用作信号的衰落补偿; G为8个字节,为保护时隙 ;W为8个字节,为符号率及调制电平选择字;CE为32个字节,为信道估计字。对以上数据帧格式,我们将用CPLD技术来实现。

2数据帧的实现

2.1R,P,G,W码

帧同步是为了保证收、发各对应话路在时间上保持一致,这样接收端就能正确接收发送端送来的每一个话路信号,他必须在位同步的前提下实现。为了建立收、发系统的帧同步,需要在每一帧(或几帧)中的固定位置插入具有特定码型的帧同步码。这样,只要收端能正确识别出这些帧同步码,就能正确辨别出每一帧的首尾,从而正确区分出发端送来的各路信号。

同步码的选择除了与其插入方式有关外,还跟帧同步码组长度、帧长度、帧码组的结构有关,这三个因素互相关联,合理选择这三个因数可以获得在技术和经济两方面都较合理的帧结构。如果增加帧同步码可能会提高通信的传输效率,但是会增加同步码的出错率,同时可能出现假同步码,以至于会干扰同步系统,所以同步码的选择也是比较重要的。

导频码P作为信道估计的作用,在发送端将数据分帧,每帧中以一定的间隔插入已知的导频符号,经信道后,接收端提取这些位置的信道畸变影响。导频符号辅助下的信道估计利用这些位置的信道畸变影响做内插滤波,从而估计出一帧中每个信号畸变影响。

Walsh函数是一种非正弦的完备正交函数系。由于仅有2种可能的取值:+1和-1(或0和1),比较适合用来表达和处理数字信号。Walsh早在1923年提出这个函数的完整理论。在此后的40多年中,Walsh函数在电子技术中没有得到很大的发展和应用。近年来由于数字集成电路的迅速发展,由于Walsh函数具有理想的互相关特性,所以Walsh函数得到应用。在Wa lsh函数中,两两之间的互相关函数为“0”,他们之间是正交的,因而在码分多址通信中,Walsh函数可以作为地址码使用。Walsh函数可以用哈达码(Hadamard)矩阵H表示,利用递推关系很容易构成Walsh函数序列。哈达矩阵H是0和1元素构成的正交方阵,所谓正交方阵,是指他的任意两行(或两列)都是相互正交的,即任意两行(或两列)的对应相乘之和等于0,他们的相关函数为0。

用AHDL语言在MAX+Plus II环境下将他们各自做成ROM模块。

2.2CE码的实现

采用4阶的M序列作为CE码,用MAX+Plus II的原理图设计方法来实现。经过编译后得到的符号文件如图2所示。

图2中的INCLOCK是控制移位的时钟频率。CLR用于清零,当CLR=1时表示不清零,否则表示清零。ENABLE是使能端,当ENALBE=1时表示正常工作,否则表示维持现状,不能正常工作。OUTCE是输出的CE码。图3是经过仿真以后的CE4scf时序图。[page]

2.3速率调整和数据分离

由于每个突发块的数据是320 b,假定输入的数据速率是400 kS/s,然而由于输出的数据是416 b,所以输出的数据速率应该为400/320×416=512 kS/s,所以数据输入与输出之间需要进行速率调整,这时就利用MAX+Plus II 中的双端口RAMALTDPR AM元件进行速率调整。由于读入的数据是320 b,所以地址线为9根,经过速率调整后进行数据分离,将分离的数据放入存储器中。要控制好每个突发块读入数据,同时还需要有一个320 b的计数器,前160 b放入数据一中,后160 b放入数据二中,他们输出的时钟频率均为速率调整后的时钟频率。如输入的数据为10111000,经过双端口RAM后的数据分别是1011和1000。

3整个数据帧的实现与仿真结果

经过一系列的底层模块的设计,可用顶层模块程序把各底层模块进行合成。合成时同步码 R、导频码P、W码、保护时隙的G,CE码、及分离后的数据通过计数器计数来控制缓冲器的地址。合成后整个程序经编译产生如图4所示的符号图。

图4中的INCLOCK、OUTCLOCK分别表示帧的输入频率和输出频率,本次仿真中的输入周期为2. 5μs,而输出的周期为1.92 μs。INDATA、OUTDATE表示输入数据和输出数据。经过仿真,得到图5所示的时序图。

由于帧的输入频率与输出频率不同,所以可能会造成数据输出时出错,因为数据输入的时 钟周期为2.5μs,数据输出的时钟周期为1.92μs,所以要想取得160 b所需要时间为16 0×2.5μs=400μs,而当缓冲器重读取数据一所需要时间为(8+8+160)×1.92μs=33 7.92 μs,小于400μs,所以输出的时钟比数据输入的时钟至少要提前400-337.92=62.08μs,数据二的读取时间需要(8+8+32+8+160)×192μs=414.72 μs,大于400μs,所以读取数据二时不会出现问题。数据帧头部的时序图如图6所示。

4结语

宽带无线多媒体通信系统,采用自适应调制技术能达到高质量、高速、高灵活性的通信。 本文提出了一种针对TDMA/TDD自适应调制系统的数据帧结构的设计方法,并用软件无线 电技术来实现这种数据帧结构,仿真结果表明,设计方法正确,实现结果令人满意。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭