当前位置:首页 > > Linux阅码场
[导读]本文从计算机组成原理的层面详细介绍了DMA,以及Linux网络子系统的DMA机制是如何实现的。

本文由西邮陈莉君教授研一学生进行解析,由白嘉庆整理,薛晓雯编辑,崔鹏程校对.

我们先从计算机组成原理的层面介绍DMA,再简单介绍Linux网络子系统的DMA机制是如何实现的。

一、计算机组成原理中的DMA

以往的I/O设备和主存交换信息都要经过CPU的操作。不论是最早的轮询方式,还是我们学过的中断方式。虽然中断方式相比轮询方式已经节省了大量的CPU资源。但是在处理大量的数据时,DMA相比中断方式进一步解放了CPU。

DMA就是Direct Memory Access,意思是I/O设备直接存储器访问,几乎不消耗CPU的资源。在I/O设备和主存传递数据的时候,CPU可以处理其他事。

1. I/O设备与主存信息传送的控制方式

I/O设备与主存信息传送的控制方式分为程序轮询、中断、DMA、RDMA等。

先用“图1”大体上说明几种控制方式的区别,其中黄线代表程序轮询方式,绿线代表中断方式,红线代表DMA方式,黑线代表RDMA方式,蓝线代表公用的线。可以看出DMA方式与程序轮询方式还有中断方式的区别是传输数据跳过了CPU,直接和主存交流。

“图1”中的“接口”既包括实现某一功能的硬件电路,也包括相应的控制软件,如 “DMA接口” 就是一些实现DMA机制的硬件电路和相应的控制软件。

“DMA接口”有时也叫做“DMA控制器”(DMAC)。

图1 

上周分享“图1”时,刘老师说在DMA方式下, DMA控制器(即DMA接口)也是需要和CPU交流的,但是图中没有显示DMA控制器与CPU交流信息。但是这张图我是按照哈工大刘宏伟老师的《计算机组成原理》第五章的内容画出的,应该是不会有问题的。查找了相关资料,觉得两个刘老师都没有错,因为这张图强调的是数据的走向,即这里的线仅是数据线。如果要严格一点,把控制线和地址线也画出来,将是“图2”这个样子:

图2 

这里新增了中断方式的地址线和控制线、DMA方式的地址线和控制线。(“图2”也是自己绘制,其理论依据参考“图3”,这里不对“图3”进行具体分析,因为涉及底层的硬件知识)

“图2”对“图1”的数据线加粗,新增细实线表示地址线,细虚线表示控制线。可以看出在中断方式下,无论是传输数据、地址还是控制信息,都要经过CPU,即都要在CPU的寄存器中暂存一下,都要浪费CPU的资源;但是在DMA方式下,传输数据和地址时,I/O设备可以通过“DMA接口”直接与主存交流,只有传输控制信息时,才需要用到CPU。而传输控制信息占用的时间是极小的,可以忽略不计,所以可以认为DMA方式完全没有占用CPU资源,这等价于I/O设备和CPU可以实现真正的并行工作,这比中断方式下的并行程度要更高很多。

图3 
2. 三种方式的CPU工作效率比较

在I/O准备阶段,程序轮询方式的CPU一直在查询等待,而中断方式的CPU可以继续执行现行程序,但是当I/O准备就绪,设备向CPU发出中断请求,CPU响应以实现数据的传输,这个过程会占用CPU一段时间,而且这段时间比使用程序轮询方式的CPU传输数据的时间还要长,因为CPU除了传输数据还要做一些准备工作,如把CPU寄存器中的数据都转移到栈中。

但是DMA方式不一样,当I/O准备就绪,设备向CPU发出DMA请求,CPU响应请求,关闭对主存的控制器,只关闭一个或者几个存取周期,在这一小段时间内,主存和设备完成数据交换。而且在这一小段时间内,CPU并不是什么都不能做,虽然CPU不能访问主存,即不能取指令,但是CPU的cache中已经保存了一些指令,CPU可以先执行这些指令,只要这些指令不涉及访存,CPU和设备还是并行执行。数据传输完成后,DMA接口向CPU发出中断请求,让CPU做后续处理。大家可能会奇怪DMA接口为什么也能发出中断请求,其实DMA接口内有一个中断机构,见“图3”,DMA技术其实是建立在中断技术之上的,它包含了中断技术。

总之,在同样的时间内,DMA方式下CPU执行现行程序的时间最长,即CPU的效率最高。


二、Linux网络子系统中DMA机制的实现
1. DMA机制在TCP/IP协议模型中的位置

网卡明显是一个数据流量特别大的地方,所以特别需要DMA方式和主存交换数据。

主存的内核空间中为接收和发送数据分别建立了两个环形缓冲区(Ring Buffer)。分别叫接受环形缓冲区(Receive Ring Buffer)和发送环形缓冲区(Send Ring Buffer),通常也叫DMA环形缓冲区。

下图可以看到DMA机制位于TCP/IP协议模型中的位置数据链路层。

网卡通过DMA方式将数据发送到Receive Ring Buffer,然后Receive Ring Buffer把数据包传给IP协议所在的网络层,然后再由路由机制传给TCP协议所在的传输层,最终传给用户进程所在的应用层。下一节在数据链路层上分析具体分析网卡是如何处理数据包的。

2. 数据链路层上网卡对数据包的处理

DMA 环形缓冲区建立在与处理器共享的内存中。每一个输入数据包被放置在环形缓冲区中下一个可用缓冲区,然后发出中断。接着驱动程序将网络数据包传给内核的其它部分处理,并在环形缓冲区中放置一个新的 DMA 缓冲区。

驱动程序在初始化时分配DMA缓冲区,并使用驱动程序直到停止运行。

准备工作:

系统启动时网卡(NIC)进行初始化,在内存中腾出空间给 Ring BufferRing Buffer 队列每个中的每个元素 Packet Descriptor指向一个sk_buff ,状态均为ready

上图中虚线步骤的解释:

  • 1.DMA 接口将网卡(NIC)接收的数据包(packet)逐个写入 sk_buff ,被写入数据的 sk_buff 变为 used 状态。一个数据包可能占用多个 sk_buff , sk_buff读写顺序遵循先入先出(FIFO)原则。

  • 2.DMA 写完数据之后,网卡(NIC)向网卡中断控制器(NIC Interrupt Handler)触发硬件中断请求。

  • 3.NIC driver 注册 poll 函数。

  • 4.poll 函数对数据进行检查,例如将几个 sk_buff 合并,因为可能同一个数据可能被分散放在多个 sk_buff 中。

  • 5.poll 函数将 sk_buff 交付上层网络栈处理。

后续处理:

poll 函数清理 sk_buff,清理 Ring Buffer 上的 Descriptor 将其指向新分配的 sk_buff 并将状态设置为 ready。

3.源码分析具体网卡(4.19内核)

Intel的千兆以太网卡e1000使用非常广泛,我虚拟机上的网卡就是它。

这里就以该网卡的驱动程序为例,初步分析它是怎么建立DMA机制的。

源码目录及文件:

内核模块插入函数在e1000_main.c文件中,它是加载驱动程序时调用的第一个函数。

 

该函数所做的只是向PCI子系统注册,这样CPU就可以访问网卡了,因为CPU和网卡是通过PCI总线相连的。

具体做法是,在第230行,通过pci_register_driver()函数将e1000_driver这个驱动程序注册到PCI子系统。

e1000_driverstruct pci_driver类型的结构体,

 

e1000_driver```里面初始化了设备的名字为“e1000”,

还定义了一些操作,如插入新设备、移除设备等,还包括电源管理相关的暂停操作和唤醒操作。下面是struct pci_driver一些主要的域。

对该驱动程序稍微了解后,先跳过其他部分,直接看DMA相关代码。e1000_probe函数,即“插入新设备”函数中,下面这段代码先对DMA缓冲区的大小进行检查

如果是64位DMA地址,则把pci_using_dac标记为1,表示可以使用64位硬件,挂起32位的硬件;如果是32位DMA地址,则使用32位硬件;若不是64位也不是32位,则报错“没有可用的DMA配置,中止程序”。

 

其中的函数dma_set_mask_and_coherent()用于对dma_maskcoherent_dma_mask赋值。

dma_mask表示的是该设备通过DMA方式可寻址的物理地址范围,coherent_dma_mask表示所有设备通过DMA方式可寻址的公共的物理地址范围,

因为不是所有的硬件设备都能够支持64bit的地址宽度。

/include/linux/dma-mapping.h

 

rc==0表示该设备的dma_mask赋值成功,所以可以接着对coherent_dma_mask赋同样的值。

继续阅读e1000_probe函数,

 

如果pci_using_dac标记为1,则当前网络设备的features域(表示当前活动的设备功能)和vlan_features域(表示VLAN设备可继承的功能)都赋值为NETIF_F_HIGHDMANETIF_F_HIGHDMA表示当前设备可以通过DMA通道访问到高地址的内存。

因为前面分析过,pci_using_dac标记为1时,当前设备是64位的。 e1000_probe函数完成了对设备的基本初始化,接下来看如何初始化接收环形缓冲区。

 

这里dma_alloc_coherent()的作用是申请一块DMA可使用的内存,它的返回值是这块内存的虚拟地址,赋值给rxdr->desc 其实这个函数还隐式的返回了物理地址,物理地址存在第三个参数中。 指针rxdr指向的是struct e1000_rx_ring这个结构体,该结构体就是接收环形缓冲区。

若成功申请到DMA内存,则用memset()函数把申请的内存清零,rxdr的其他域也清零。

对于现在的多核CPU,每个CPU都有自己的接收环形缓冲区,e1000_setup_all_rx_resources()中调用e1000_setup_rx_resources(),初始化所有的接收环形缓冲区。

 
e1000_setup_all_rx_resources()e1000_open()调用,也就是说只要打开该网络设备,接收和发送环形缓冲区就会建立好。
 


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭