当前位置:首页 > 物联网 > 物联网技术文库
[导读] 对智能制造最大的误解是机器换人,实现高度自动化。我们讲智能制造,实际上是在讨论,如何解决当下企业痛点问题,轻松获取数据,将数据串联,打破信息孤岛,实现业务的融合,从而提高生产力,平衡生产力和生产

对智能制造最大的误解是机器换人,实现高度自动化。我们讲智能制造,实际上是在讨论,如何解决当下企业痛点问题,轻松获取数据,将数据串联,打破信息孤岛,实现业务的融合,从而提高生产力,平衡生产力和生产关系。

智能制造系统之殇

企业信息化建设是三驾马车并驾齐驱:ERP、PDM与MES。ERP管理企业资源,如人员、设备折旧等,从客户开始,到订单,到主计划,回答为什么生产;PDM管理产品设计过程,如产品图纸、工艺等,PDM从产品需求开始到工艺编写,回答怎么生产;MES管理制造的过程,如生产计划、生产作业等,从计划到具体加工,回答到底是怎么干的。

综合来看,ERP、MES与PDM都属于管理系统,MES(ManufacturingExecution System)全称是制造执行系统,主要面向的对象是管理层。

战略层:战略层如企业总经理、型号总师等,主要获知生产的趋势性数据,如生产问题发生率、任务完成率、额定工时统计等等,都属于分析统计类数据,简称高阶数据;

管理层:管理层如计划员、调度员等,主要获知生产的实时数据,如生产进度、现场问题等,属于实时性数据,对数据的实时性要求较高;

执行层:执行层如班组长、现场工人,主要获知的是相对静止的信息,如产品的操作手册、加工工艺或者临时工艺通知等内容。

综上执行层虽然处于数据采集最核心的位置,但对于他们工作KPI(工时/件数)等均没有增益,甚至会影响产量。

MES大部分功能面向管理层,但是MES的应用主要靠执行层表现。

执行层的数据来源于机器采集、手工录入、上游系统传递、硬件集成等等,其中主要的数据还是来源于手工录入,所以在上线MES系统后,执行层需要学习MES系统的操作。

由于管理层希望看到更多来自于执行层的数据信息,以辅助工厂的决策。执行层的工人们开始罔顾生产,去大量的在系统中录入数据,这种本末倒置的行为,导致两种结果:

1.系统培训浪费时间,造成本职工作未按时完成;

2.没有减少工作量,反而因为要录入数据降低了效率;

在这样的现状下,MES的应用效果大打折扣。造成了一个智能制造之殇:管理层需要更多更全面的数据,执行层希望更具备效率更简单舒适的工作工具。如何轻松简洁的获取数据,再将数据串联起来,打破信息孤岛,实现业务融合是目前智能制造的重中之重。

智能制造的解救之钥

事实上,在我国工厂的很多车间里,各个生产设备之间、生产设备和控制器之间,都已经基本实现了信息化的连通。再厉害一点的公司,整个工厂已经通过制造执行系统(MES)连通起来,而业务部门全部通过ERP连通起来了。

这样的情况下,问题出在哪里呢?

ERP和MES其实并没有连起来!

这之间存在信息孤岛。所以当ERP给MES下达生产计划指令后,如果MES在生产过程中发生与计划偏差的事项(比如设备坏了,原料不合格等等),MES会根据车间的实际情况进行调整。但是ERP不知道,它会继续按照原本的计划执行订单,时间久了,财务系统和工厂的实际情况就会出现非常大的偏差。

没有连起来的原因也很简单:

1、ERP和MES的开发公司通常是两拨人,搞财务的和搞生产的合作,不但互相不懂对方的职业术语,鸡同鸭讲,而且互相看不上对方。

2、公司内部的业务部门和生产部门通常是分开运营,在没有实时沟通的情况下,各自是不知道对方的调整的。

当然,ERP和MES的问题只是工厂内系统断层的一个问题缩影,事实上工厂里还有非常多的其他系统,设计、制造、采购等,这些系统都是一个个信息孤岛,互相都不知道对方的行动和接下来的计划。这个问题自工业革命以来就存在,但是工业时代,产品的生产周期很长,所以问题在生产研发的过程中能够得到调整。

但是互联网和智能时代的到来,带来了新的变化。

互联网和智能让经济得以高速发展,与此同时,产能过剩严重成了全球性的问题。企业的竞争越来越激烈,我们的产品更新换代越来越快,以往一款产品卖十年二十年,现在我们看到的是,每隔几个月,就会有多个产品的更新迭代。

另外,互联网帮我们消除了信息的不对称。过去的大批量统一生产的做法显然已经行不通。随着消费升级,消费者更青睐于个性化的产品。这就要求工业企业能够实现小批量、定制化的快速生产。

如果这个时代延续过去的做法,显然很快就会被淘汰,因此,企业最迫切需要做的就是连接ERP和MES,打破业务和生产之间的信息孤岛,进入完全的自动化和信息化阶段,也就是工业3.0大圆满阶段。 这个阶段的单点功能不需要太完美,在下一个阶段,中国人自己的智能制造阶段,需要解决的就是单点数据。

智能制造的AI之路

数据采集:

采集数据是根本的,但是需要在不增加工作量的基础上,因为人为的采集数据就不可取。AI的到来,为我们提供了可能,我们现在看到的人脸识别、智能语音等等,都体现了AI这一强大的实力。

所以工业的AI之旅注定达到的目的是:最大限度的获取非隐私数据,极多数的单点工具,让工人只做本职工作的事情,不再因为管理需求而做一些无用功。

数据处理:

AI为我们采集到过多的数据,但是这些数据中必然存在大量的无用冗杂数据,如果不进行择优清洗,后续的工作会很难进行,基于AI的大数据处理应用而生,帮助我们实现数据的转化和存储

数据分析:

当世界多变,我们就不能只是单纯的从一个点出发去做判断和决策。由于大量的多面的数据存在,会要求更多的算法去处理数据,挖掘更多的深层的多维信息,把这些数据转化成自己的智慧,做出最理智最正确的判断和决策,从而创造在这个领域的财富,才是智能制造要实现的最终目标。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭