当前位置:首页 > 智能硬件 > 人工智能AI
[导读] “人工智能的基石是数学,没有数学基础科学的支持,人工智能很难行稳至远。” 在中国科学院院士、西安交通大学教授徐宗本看来,目前人工智能所面临的一些基础问题,其本质是来自数学的挑战。 近日,

“人工智能的基石是数学,没有数学基础科学的支持,人工智能很难行稳至远。” 在中国科学院院士、西安交通大学教授徐宗本看来,目前人工智能所面临的一些基础问题,其本质是来自数学的挑战。

近日,由联合国教科文组织和中国工程院联合主办的以“大数据与知识服务”为主题的联合国教科文组织国际工程科技知识中心2019国际高端研讨会上,徐宗本在题为《AI与数学:融通共进》的主题报告上如是说。

数学家眼里的人工智能是什么?

徐宗本给出的答案简洁明了:当下主要指机器学习

如果给这个名词赋予一个说明,他认为这是人或者智能体,通过与环境的交互来提升自身行为和解决问题能力的智能化操作。“机器学习是把这种智能形式化为数学公式,转换成计算机可以操作的算法和软件。”

进一步说,人工智能实际上是一个将数学、算法理论和工程实践紧密结合的领域。将其扒开来看,就是算法,也就是数学、概率论、统计学、各种数学理论的体现。

不过徐宗本认为,作为人工智能基石的数学,还存在五大核心问题待解,而这也是制约人工智能进一步发展的“绊脚石”。

第一是大数据的统计学基础

徐宗本认为,人工智能和大数据是一对孪生姐妹。人工智能更多指应用模式,强调与领域知识的结合。大数据是最底层的信息技术,強调机器和机器、机器与人之间的内容交互与理解。但是当前,分析大数据的统计学基础面临颠覆,应用于复杂大数据分析的极限理论、统计推断方法、真伪判定等数学基础都尚未完全建立起来。

第二是大数据计算基础算法

一般而言,理解和分析大数据都是通过数据处理或数据分析来实现的,而无论是数据处理还是数据分析最终都化归到求解一系列基本的数学问题,像线性方程组求解、图计算、最优化计算、高维积分等。不过,这些看似早已解决的问题在大数据情形下却成了“拦路虎”。

为此,他以旅游为例,打了一个生动的比方来解释这种挑战。“比如从西安到北京,怎么走最近?过去地图分辨率不高,根据普通的地图可以获取基本的路线。但现在大数据背景下地图的分辨率越来越高,不可能一次就给你涵盖西安至北京之间全部城市与道路的数据,只能一次一次地分别给其中某些城市之间的道路信息。如何在西安就知道到达北京需要多少时间,怎样走最近?要带多少钱?现在的机器还回答不了这些问题。这就是由于分布式图信息环境下图计算基础算法没有解决的原因。”

第三是深度学习的数学理论

徐宗本认为,这个问题在当下尤为关键。新一轮的人工智能多以深度学习为基本模型,然而深度学习的设计基础在哪?什么样的结构决定了什么样的性能?能不能有台劳公式和富里埃级数这样的数学表示理论?这些基本的理论问题还没有解决。正是这个原因,现在的人工智能还得靠“人工”来换“智能“,这也是造成当下“人工智能=人工+智能”的缘由。

第四是非常规约束下的最优输运

人工智能的很多问题都可归纳为两个领域数据打通问题,即让两个对象在满足某一个特定的不变量情况下互相转移。“比如中英文互译,它就是在保持语义的情况下将中文数据转换成英文数据。”

如果应用到现实,徐宗本畅想,将医院的CT和核磁共振图像相互转移或能很好地解决医疗诊断的信息不足问题。“因为照的是同一个人,这里人就是不变量。要解决这些问题,建立特定约束下如何实现最优传输的数学理论与方法是基本的。”

第五是关于学习方法论的建模与函数空间上的学习理论

徐宗本表示,研究生阶段学到的机器学习理论,需上升到学习方法论学习的阶段。

“从数学上说,无论函数空间上的学习理论怎么建立,本质是要适应不同的任务。由于任务本身是函数,是无穷的,那么就需要把过去机器学习中对样本、数据的选择、泛化,推广到对任务的选择、泛化上去。”

如果辩证地看待数学和人工智能的关系,相辅相成可能是其最好的诠释。徐宗本表示,不仅数学可为人工智能提供基础,人工智能也为数学研究提供新的方法论。

“比如解偏微分方程,过去人们可能会使用计算机,现在用人工智能可以做的更好。” 他认为,让数学中的模型方法与人工智能的数据方法结合,可将机器的深度学习应用得更加精明。

面对如今发展如火如荼的人工智能产业,这位院士也给出了自己对从业者的希冀。

“人工智能想要做得好,要靠数学问题尤其是算法的解决。”徐宗本再次强调,从业者应潜心从基础研究抓起,使我国的应用场景优势真正转化为技术优势和产业优势。

来源:科学网

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭