当前位置:首页 > 物联网 > 区块链
[导读] 智能合约可以部署其他智能合约。这使工厂模式成为可能,在工厂模式中,您可以创建多个智能合同,每个智能合同只跟踪一件事,而不是一个跟踪许多事情的智能合同。使用此模式可以简化代码并减少某些类型的安全漏

智能合约可以部署其他智能合约。这使工厂模式成为可能,在工厂模式中,您可以创建多个智能合同,每个智能合同只跟踪一件事,而不是一个跟踪许多事情的智能合同。使用此模式可以简化代码并减少某些类型的安全漏洞的影响。

在这篇文章中,我将向您介绍一个基于我们在最近的审计中发现的一个关键漏洞的示例。如果使用了工厂模式,那么漏洞就就减少了很多。
 

越野车智能合约

下面是一个智能合约,通过一个相当简单的界面销售WETH。如果您有WETH,你只需要批准这个智能合约出售你的代币,它将确保你得到正确的金额支付。只要批准充足的代币,任何人都可以任意购买WETH。

合约使用提款模式将付款交付给卖方,但合约的作者犯了一个严重的错误:

1// Technically this could sell any token, but we‘re selling WETH in this

2// example because then I don’t have to think about prices. 1 WETH costs 1 ETH.

3contract WETHMarket {

4 IERC20 public weth;

5 mapping(address =》 uint256) public balanceOf;

6

7 constructor(IERC20 _weth) public {

8 weth = _weth;

9 }

10

11 // Buy WETH from a specified seller. Seller must first approve WETH.

12 function buyFrom(address seller) external payable {

13 balanceOf[seller] += msg.value;

14 require(weth.transferFrom(seller, msg.sender, msg.value),

15 “WETH transfer failed.”);

16 }

17

18 // Used by a seller to get their ETH.

19 funcTIon withdraw(uint256 amount) external {

20 require(amount 《= balanceOf[msg.sender], “Insufficient funds.”);

21

22 // Whoops! Forgot this:

23 // balanceOf[msg.sender] -= amount;

24

25 (bool success, ) = msg.sender.call.value(amount)(“”);

26 require(success, “ETH transfer failed.”);

27 }

28}

(如果您想知道为什么代码使用.call而不是.transfer,请阅读“立即停止使用Solidity的传输()”)。

因为卖方的余额从未减少,所以欠任何以太的卖方都可以反复调用withdraw()来消耗每个人的合约。这是一个严重的漏洞。

修复这个bug,就像大多数bug一样,一旦你发现了它,就变得微不足道了。但在这篇文章中,我想谈谈如何通过使用工厂模式来减轻这个bug,即使我们不知道这个特定的问题。

现在让我们看一下更简单的WETHMarket合约版本。在这个版本中,合约只负责销售一个卖家的WETH。此合约与先前版本具有相同的bug:

1contract WETHSale {

2 IERC20 public weth;

3 address seller; // only a single seller

4 uint256 public balance; // no need for a mapping anymore

5

6 constructor(IERC20 _weth, address _seller) public {

7 weth = _weth;

8 seller = _seller;

9 }

10

11 // No need to specify the seller.

12 funcTIon buy() external payable {

13 balance += msg.value;

14 require(weth.transferFrom(seller, msg.sender, msg.value));

15 }

16

17 funcTIon withdraw(uint256 amount) external {

18 require(msg.sender == seller, “Only the seller can withdraw.”);

19 require(amount 《= balance, “Insufficient funds.”);

20

21 uint256 amount = balance;

22

23 // Whoops! Forgot this:

24 // balance -= amount;

25

26 (bool success, ) = msg.sender.call.value(amount)(“”);

27 require(success, “ETH transfer failed.”);

28 }

29}

尽管存在完全相同的逻辑错误,但此漏洞并不是那么严重。只允许一个帐户调用withdraw(),并且合约中存储的所有以太网都属于该帐户。这个错误的影响只是余额并不能反映合约中的真实余额。

这个bug是手工挑选来显示其优点的,但是这个bug代表了托管协议中的一大类bug。根据我审计智能合约的经验,这是发现关键漏洞最常见的地方之一。

托管背后的想法是,不同的资金必须分开存放,以确保合同始终可以涵盖所有欠款。获得托管权最简单的方法之一是将资金完全分成不同的智能合约。

您可以将工厂模式看作是一种深入防御的托管方法。

简单代码

单卖方版本的合约不仅有更强大的代管,而且更简单。我们去掉了一个函数参数和一个映射。在生产代码中,我们可能会更进一步,完全删除balance,而代之以address(this).balance。

因为我写合约是为了方便阅读,原来的代码已经很简单了。在现实世界的例子中,这种差异可能更为显著。从安全的角度来看,任何降低复杂性的机会都是一种胜利。

工厂模式

每个卖家都可以部署自己的Wethsale合约并从简单的合约中获益,但是这种方法有一个主要的缺点,恶意卖家可能会部署稍微修改过的代码版本,但实际上并没有传输weth。

即使像ConsenSys Diligence这样有信誉的公司审核了WETHSale代码,每个买家也必须验证他们购买的具体合约是否使用了那些确切的代码。

使用工厂可以解决这个问题。工厂确保每个部署的合约都使用相同的代码,并且它提供了一个简单的查找机制来查找给定卖方的单一合约:

contract WETHSaleFactory {

IERC20 public weth;

mapping(address =》 WETHSale) public sales;

constructor(IERC20 _weth) public {

weth = _weth;

}

funcTIon deploy() external {

require(sales[msg.sender] == WETHSale(0), “Only one sale per seller.”);

sales[msg.sender] = new WETHSale(weth, msg.sender);

}

}

潜在缺陷

使用工厂模式的一个主要缺点是价格昂贵。CREATE操作码目前的燃气成本为32,000。我们的特殊合约还需要另外两个SSTORE来跟踪WETH和卖方地址,每个地址需要20,000燃气。这比代码的原始多卖家版本至少多72,000气体。

另一个潜在的缺点是复杂性。在大多数实际情况下,工厂模式简化了现有的合同,但请记住,它还添加了一个新的合同:工厂本身。根据代码的不同,这可能会导致复杂性的增加。

在决定工厂模式之前,请仔细考虑变更的总体影响。

总结

1. 托管方面的错误是导致关键漏洞的一个重要原因。

2. 使用单独的智能合约可以降低这些错误的严重性。

3. 工厂模式以一种不可信任的方式实现了这一点。

4. 在采用工厂模式之前还要考虑潜在的缺点。
来源: 区块链研究实验室 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭