当前位置:首页 > 通信技术 > 通信网络
[导读] 5G峰值速率 5G性能指标,大家耳熟能详。 其中,各家比拼的性能关键便是5G峰值速率。 根据ITU-R M.[IMT-2020.TECH PERF REQ]的介绍,峰值数

5G峰值速率

5G性能指标,大家耳熟能详。

其中,各家比拼的性能关键便是5G峰值速率。

根据ITU-R M.[IMT-2020.TECH PERF REQ]的介绍,峰值数据速率是在理想条件下可达到的最大数据速率,可以理解为系统最大承载能力的体现。

针对eMBB场景,峰值速率的最低要求如下:

► 下行链路峰值速率为20 Gbps;

► 上行链路峰值速率为10 Gbps。


 

5G理论峰值速率的粗略计算

关于5G理论峰值速率的粗略计算有很多思路,各有千秋,本文以某些配置下的case为例,抛砖引玉,帮助大家理解5G理论峰值速率及其相应的计算。

在计算理论峰值速率之前,需要确定以下参数的数值。

(1)资源块PRB数目

以目前5G sub-6GHz频段为例,最多传输的PRB数目如下表Table 5.3.2-1所示,摘选自3GPP TS 38.101-1协议。

其中,系统带宽100M,子载波间隔30KHz的5G系统,最多传输的PRB数目为273。

(2)符号Symbol数目

以30KHz的子载波间隔为例,下表Table 4.2-1摘选自3GPP TS 38.211协议。

查表可知,循环前缀的类型是Nomal CP,查找Nomal CP对应的表格Table 4.3.2-1

查表可知,每个slot的OFDM符号是14,以30KHz的子载波为例,则每个slot占用的时间是0.5ms。

考虑到部分资源需要用于发送参考信号,此处扣除开销部分做近似处理,认为3个符号用于参考信号的发送,剩下11个符号用于数据传输。当然,实际网络的开销计算更为复杂,此处不做过多介绍。

当然,峰值速率与帧结构紧密相关。

帧结构

常见的帧结构配置:

Type 1:2.5ms双周期

Type 2:5ms单周期

5G上行理论峰值速率的粗略计算

♦上行基本配置,2流,64QAM(一个符号6bit)

Type 1:2.5ms双周期

由2.5ms双周期帧结构可知,在特殊子帧时隙配比为10:2:2的情况下,5ms内有(3+2*2/14)个上行slot,则每毫秒的上行slot数目约为0.657个/ms。

上行理论峰值速率的粗略计算:

273RB*12子载波*11符号(扣除开销)*0.657/ms*6bit(64QAM)*2流= 284Mbps

Type 2:5ms单周期

由5ms单周期帧结构可知,在特殊子帧时隙配比为6:4:4的情况下,5ms内有(2+4/14)个上行slot,则每毫秒的上行slot数目约为0.457/ms。

上行理论峰值速率的粗略计算:

273RB*12子载波*11符号(扣除开销)*0.457/ms*6bit(64QAM)*2流=198Mbps

5G下行理论峰值速率的粗略计算

♦下行基本配置,4流,256QAM(一个符号8bit)

Type 1:2.5ms双周期

由2.5ms双周期帧结构可知,在特殊子帧时隙配比为10:2:2的情况下,5ms内有(5+2*10/14)个下行slot,则每毫秒的下行slot数目约为1.28个/ms。

下行理论峰值速率的粗略计算:

273RB*12子载波*11符号(扣除开销)*1.28/ms*8bit(256QAM)*4流=1.48Gbps

Type 2:5ms单周期

由5ms单周期帧结构可知,在特殊子帧时隙配比为6:4:4的情况下,5ms内有(7+6/14)个下行slot,则每毫秒的下行slot数目约为1.48个/ms。

下行理论峰值速率的粗略计算:

273RB*12子载波*11符号(扣除开销)*1.48/ms*8bit(256QAM)*4流=1.7Gbps

写在最后

目前5G试验网测试如火如荼,大家可以对照实际测出的数据,看看离理论峰值的距离还有多远。当然,峰值只是理想环境下的最大能力,实际应用中当然得打个折扣,具体几折,看各家本事。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭