当前位置:首页 > 工业控制 > 伺服与控制
[导读] 同步电机和感应电机一样是一种常用的交流电机。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 同步电机的特点是稳态运行时,转子的转速和电网频率之间有不变的关系n=

同步电机和感应电机一样是一种常用的交流电机。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。

同步电机的特点是稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns成为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。

同步电机的基本结构

同步电机在结构上是定子铁心上嵌放三相对称绕组,转子铁心上装置直流励磁绕组。

主磁场的建立

励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。

载流导体

三相对称的电枢绕组充当功率绕组,减速箱成为感应电势或者感应电流的载体。

切割运动

原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组。

交变电势的产生

由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。

同步电机的工作原理如下:

1、主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。

2、载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。

3、切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组。

4、交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。

5、交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。

同步电动机工作原理图解

同步电动机的结构与同步发电机相同,其转子一般都采用凸极式结构。使用时,同步电动机的定子绕组中要通入三相交流电流,同时转子励磁绕组中通入直流电励磁。

如图所示是同步电动机的工作原理示意图。定子三相绕组(也称电枢绕组)接至三相交流电源后,便有三相对称电流流过,并产生电枢旋转磁场。该磁场以同步速度n1= 60f1/p在气隙空间旋转,其方向决定于电流的相序。转子的励磁绕组接入直流电源后,就有直流电流流过,并产生大小和极性都不变的恒定磁场,极对数和电枢旋转磁场一样。根据同性磁极互相排斥、异性磁极互相吸引的原理,当转子磁极的S极与电枢旋转磁场的N极对齐(或转子的N极与旋转磁场的S极对齐)时,转子磁极将被电枢旋转磁场吸引而产生电磁吸引力,并进而产生电磁转矩,拖动转子跟着旋转磁场转动。因而转子的转速大小及方向和电枢旋转磁场的转速大小及方向相同,两者相对于定子“同步”旋转,故称为同步电动机。如果同步电动机轴上带有机械负载,则和异步电动机一样,电枢绕组从电网吸收电功率,通过气隙磁场传给转子,变为机械功率,带动生产机械做功。

图 同步电动机工作原理图

可以证明,同步电动机的电磁转矩的大小与电枢磁场磁极轴线和转子磁极轴线的夹角有关,如果外加电压和电动机的励磁电流不变,则在一定的范围内(《90°),夹角越大,电磁转矩越大;夹角越小,电磁转矩越小。

图(a)是同步电动机理想空载时的情况,这时转子磁极轴线和电枢磁场轴线重合,θ=0,电动机产生的电磁转矩为零;实际空载时,电动机有一定的空载阻力矩,故电动机要产生一定的电磁转矩来克服空载阻力矩,以维持电动机的转速不变。这时θ》0,但其值很小,如图(b)所示;若电动机轴上的负载增加,则θ角随之增加,电动机的电磁转矩也随之增加,如图(c)所示;但若电动机轴上的负载转矩太大,则电动机产生的电磁转矩将不足以克服负载转矩,同步电动机将停止旋转,这种现象称为同步电动机的“失步”现象。同步电动机产生失步现象时,通过定子绕组的电流将很大,这时应尽快切断电源,以免电动机因过热而损坏。

结论:当外加电源的频率一定时,同步电动机的转速就确定了,它总是以同步转速n1=60f1/p旋转。负载在一定范围内变化时,电动机的转速不变,这个特性是同步电动机的特点,也是优点,因此同步电动机适用于不需调速的场合,例如拖动大型空气压缩机、水泵等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭