当前位置:首页 > 公众号精选 > 松哥电源
[导读]功率MOSFET,通常由PWM或其它模式的控制器IC内部的驱动源来驱动。


刘松 刘瞻 艾结华 曹雪 张龙


 

功率MOSFET通常由PWM或其它模式的控制器IC内部的驱动源来驱动,为了提高关断的速度,实现快速的关断降低关断损耗提高系统效率,在很多ACDC电源、手机充电器以及适配器的驱动电路设计中,通常使用图1的驱动电路,使用合适的开通和关断电阻,并使用栅极下拉的PNP管。一些大功率ACDC电源有时为了提高驱动能力,外部会使用二个对管组成的图腾柱。


图1:常用栅极驱动电路


图1驱动电路的特点:

(1)实现快速的关断,降低关断损耗

(2)减小桥式电路下管关断、上管开通过程中,dV/dt和Crss在下管栅极产生的感应电压,从而防止下管栅极误触发导通,避免上、下管的直通短路。


图1的驱动电路驱动平面结构和前一代超结结构的功率MOSFET,可以在各种性能之间取得非常好的平衡,但是,新一低超结结构的功率MOSFET的开关速度非常快,因此,使用这样的驱动电路,会产生较大的dV/dt和di/dt,从而对EMI产生影响。

 

采用AOD600A70R,其中,R1=150,R2=10,R3=10k,分别在输入120V&60HZ、264V&50HZ,输出11V/4A&44W条件下测量关断波形,如图2所示。


(a) 关断波形,120V&60HZ

(b) 关断波形,264V&50HZ

图2:采用图1驱动电路的关断波形


电视机板上ACDC电源、电脑适配器等由于具有足够的空间,因此,快的开关速度实现高效的同时,可以通过调整系统输入端的滤波器实现EMI的性能。手机快速充电器内部的空间极其有限,因此,很难通过大幅调整前端的输入滤波器来保证EMI的性能,这种情况下就需要优化驱动电路来改善系统的性能。当然,优化驱动电路对于ACDC电源、电脑适配器,同样可以提高EMI性能。

 

新一低的超结结构的功率MOSFET的Coss和Crss强烈的非线性特性导致快速的开关特性,那么,就需要通过外部栅极-漏极、漏极-源极并联电容来改善其非线性特性。基于图1的驱动电路,外部并联栅极-漏极电容为11pF,如图3所示,然后测量关断波形,如图4所示。从图4的波形可以看到,外部并联栅极-漏极电容,可以降低di/dt ,但是对dV/dt的影响很小。从EMI的测量结果来看,无法达到系统的要求。为了提高系统的安全性,图中栅极-漏极电容采用二颗高压陶瓷电容串联,C1=C2=22pF。


图3:外部并联栅极-漏极电容驱动电路


(a) 关断波形,120V&60HZ

(b) 关断波形,264V&50HZ

图4:采用图3驱动电路的关断波形


测试结果表明;栅极驱动的速度仍然非常快,为了实现开关速度、开关损耗和EMI的平衡,去掉栅极的二极管和下拉PNP管,如图5所示。其中,R2=5.1,关断波形如图6所示。


图5:无三极管下拉栅极驱动电路


(a) 关断波形,120V&60HZ

(b) 关断波形,264V&50HZ

图6:使用图5驱动电路关断波形

基于图5的驱动电路,栅极-漏极外部并联11pF电容,C1=C2=22pF,如图7所示,测量波形如图8所示。


图7:无三极管下拉,外部并联栅极-漏极电容


(a) 关断波形,120V&60HZ

(b) 关断波形,264V&50HZ

图8:使用图7驱动电路关断波形


为了能够控制关断的dV/dt,漏极-源极需要并联外部电容,如图9所示。图9的电路中,加了一个二极管,这样,关断和开通可以使用不同的栅极电阻值,方便系统设计和调试优化。采用AOD600A70R,其中,C1=C2=22pF,C3=47pF,R1=R2=5.1,关断波形如图10所示。


图9;优化EMI的手机快充栅极驱动电路


(a) 关断波形,120V&60HZ

(b) 关断波形,264V&50HZ

图10:采用图9驱动电路的关断波形

 

分别在输入120V&60HZ、264V&50HZ,输出11V/4A&44W条件下,使用图3的驱动电路,测量相关的辐射。测量结果如图11所示,它们或者超标,或者达不到系统的裕量要求。图3电路即使在D、S并联电容,同样测试也过不了EMI。


(a) 120V&60HZ,水平

(b) 120V&60HZ,垂直

(c) 264V&50HZ,水平

(d) 264V&50HZ,垂直

图11:使用图3驱动电路的EMI测试结果


分别在输入120V&60HZ、264V&50HZ,输出11V/4A&44W条件下,使用图9的驱动电路,测量相关的辐射,测量结果如图12所示,这些结果都达到系统裕量的要求。


(a) 120V&60HZ,水平

(b) 120V&60HZ,垂直

(c) 264V&50HZ,水平

(d) 264V&50HZ,垂直

图12:使用图9驱动电路的EMI测试结果


新一低的超结结构的功率MOSFET应用于功率因素校正PFC以及一些要求高效、高功率密度电源,可以使用图9的驱动电路;如果其在PFC中使用多管并联,推荐使用图13电路。如果其应用于LLC谐振变换器,使用图14的电路。


图13:PFC多管并联驱动电路


图14:LLC谐振变换器驱动电路


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计

为增进大家对电源的认识,本文将对电源的分类以及电源设计的一些相关问题予以介绍。

关键字: 电源 指数 电源设计

泰克在工程社区听到了许多工程师的抱怨,因此开发了TMT4裕度测试解决方案,提高了测试的协作性和易用性。

关键字: 电源设计 测试测量

反激拓扑的前身是 Buck-Boost 变换器,只不过就是在 Buck-Boost 变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的 Buck-Boost...

关键字: 反激电源 电源设计
关闭
关闭