当前位置:首页 > 通信技术 > 通信网络
[导读] 在过去十年中,技术的迅速发展不仅导致了数据的爆炸式增长,而且导致了前所未有的对数据中心的依赖。虚拟化、物联网设备和5G等颠覆性技术的出现,正整合成巨大的带宽,这就要求数据中心迅速发展,以满足不断

在过去十年中,技术的迅速发展不仅导致了数据的爆炸式增长,而且导致了前所未有的对数据中心的依赖。虚拟化、物联网设备和5G等颠覆性技术的出现,正整合成巨大的带宽,这就要求数据中心迅速发展,以满足不断升级的新需求,并支持对延迟敏感的通信。

数据中心经营商需要引进新技术,并为未来的容量需求作出规划,以便为客户提供持续稳定的服务,并方便地满足客户不断增长的需求。确保数据中心的未来发展需要新技术的智能设计和启用。

目标考虑以确保未来的设计

数据中心和企业网络设施目前正承受着不断的压力,要求它们为未来提供容量更高、可靠性更高、具有良好技术可靠性的系统。在满足这些需求方面,高数据速率可扩展性、降低路径和空间利用率、低延迟以及易于测试和安装都是至关重要的。

对产能的需求不断增加。由于没有为未来的容量需求进行规划,数据中心运营商面临着“死于接驳线”的风险,不断在同一空间增加容量的新光缆。这种做法在增加能力的同时,实际上降低了数据中心满足未来需要的长期能力。将来将没有房间或空间来增加更多的电缆,数据中心运营商将需要彻底检修该设施的整个电缆基础设施。

数据中心运维人员需要通过数据中心内的接入点(POP ,point-of-presence)房间了解设施之间的吞吐量。在这种互连中,密度是关键,容量是必需的。重要的是要利用在一条线缆内提供高容量的选项。一根高芯数主干光缆 (HFC)可以由1728芯光纤组成,现在的极限密度光缆可以由3456芯光纤组成,在减少外部管道的使用的同时,提供了未来可用的容量。

下一代的技术是什么?

展望未来,数据中心的经营商必须开始探索技术方案,以应付日益增长的容量需求。

垂直空腔表面发射激光器(VCSEL)长期以来一直支持在数据中心低成本部署多模光纤。10G和25G通道可以通过QSFP (quad small form-factor pluggable)收发器并行运行,以有效地实现40G和100G链路,适用于4个独立的光纤通道传输。短波分复用(SWDM)和双向复用(BiDi)可以最大限度地利用OM3/4现有的基础设施,但是它们不支持多光纤通道的传输。400G的路线图是存在的,距离通常小于150米,通常将它们放在数据中心活动的服务器区域内。

当连接距离较大时,单模光纤提供了更好的选择。在单模光纤中有两种可用的收发器样式,单工和并行。密集或粗波分复用(DWDM, CWDM)可以提供高达10公里的高水平通信。虽然这些收发器的成本正在降低,但其成本仍是平行单模4通道(PSM4)的数倍,PSM4可提供长达2公里的距离。对于大型数据中心园区,PSM4是最受欢迎的选择,它要求提高设备连接光纤的数量,从而达到极值的光纤密度。

在数据中心行业中,传统的3层交换模型正让位给2层的脊叶(Spine-and-leaf)架构。Spine-and-leaf架构有助于加快数据在网络中的物理链接之间的移动,显著减少访问数据时的延迟。每个脊柱交换机都连接到每个叶交换机,由于其高密度,在需要时可以方便地部署额外的电缆。对于云服务商来说,Spine-and-leaf架构越来越成为网络架构的选择,因为它是一个可大规模伸缩的、面向未来的基础设施。

尽管spine-and-leaf架构提供了更智能、更快的系统,但迁移极大地增加了数据中心园区中服务互连所需的光纤数量。就在几年前,校园网的标准光缆是864芯,而今天,普通光缆已经是1728芯。甚至更高的光纤数,如3456芯,现在都敷设在标准管道系统内。极高密度的光缆提供更容易和更快的安装,个别纤芯发生故障时更快的光缆通道恢复,减少停机时间。

总之,这些技术使数据中心运营商能够优化连接密度,使下一代架构能够规划未来的容量。

现在实现这些技术有多重要?

如果数据中心的管理人员不能采用现有的新技术或预先提供的服务,他们很快就会发现自己落后于竞争对手。通常,这不是安装现在实际的光缆,而是在数据中心内设置空间和管道的冗余。

当您处于数据中心的规划和设计阶段时,考虑设备的预期寿命和端点容量非常重要。技术已显示出其迅速变化和增加需求的能力。电信公司提前计划,通常预测“第一天、第二天、第N天”,然后将其加倍,以解决未来的拥塞问题,这一概念对数据中心运营商也很重要。

在迁移到更高速度时,考虑到电缆的寿命,并选择确保基础设施能够支持所有网络架构,速度达到400G,这将确保数据中心能够轻松地满足未来的需求。如果没有真正的理由拖延,那就不要拖延。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭