当前位置:首页 > 芯闻号 > 技术解析
[导读]本文中,小编将对CPLD单稳态电子电路设计进行讲解。如果你对本文即将探讨的内容具有兴趣,不妨继续往下阅读哦。

电子电路设计促进一个行业的发展,了解、具备一定电子电路设计知识有益无害。为增进大家对电子电路设计的认识,小编在往期文章中带来诸多电子电路设计介绍。本文中,小编将对CPLD单稳态电子电路设计进行讲解。如果你对本文即将探讨的内容具有兴趣,不妨继续往下阅读哦。

随着电子技术特别是数字集成电路技术的迅猛发展,市面上出现了FPGA、CPLD等大规模数字集成电路,并且其工作速度和产品质量不断提高。利用大规模数字集成电路实现常规的单稳态集成电路所实现的功能,容易满足宽度、精度和温度稳定性方面的要求,而且实现起来容易得多。下面,就如何在大规模数字集成电路中将输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号做一详细介绍。

单稳态脉冲展宽电路

在众多的CPLD器件中,LatTIce公司在GAL基础上利用isp技术开发出了一系列ispLSI在线可编程逻辑器件(以下简称isp 器件),其原理和特点在许多杂志上早有报道,而且国内已有相当多的电路设计人员非常熟悉。LatTIce公司的isp器件给小编印象最深的是其工作的可靠性比较高。图1即是一种将输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号的电路原理图。

图中,TR为输入的窄脉冲雷达信号;CP为输入的系统时钟脉冲信号;Q即是单稳态脉冲展宽电路输出的宽脉冲信号。图中的单元电路符号D1既是展宽脉冲的前沿产生电路,又是展宽脉冲宽度形成电路;D2、D3是二进制计数器,主要用作展宽脉冲的宽度控制电路。根据对脉冲宽度的不同要求,可以采用不同位数的二进制或其它进制的计数器(这里,脉冲宽度的设计值是3.2μs,而CP脉冲的周期值是0.1μs);D4是展宽脉冲后沿产生电路,当计数器D3的进位输出端NQ为"高",且CP 脉冲的上升沿到达时,D4输出端输出一正向脉冲信号,经D5送至D1的CD“清零”端,从而结束了一个窄脉冲信号的展宽过程,从D1的Q输出端输出一完整的展宽脉冲信号。同时,D5的输出信号还送至D2、D3的CD“清零”端,将其“清零”后,等待下一个窄脉冲的到来。从图1所示的电路原理图中可以看到,通常可以将D3的进位输出信号NQ直接送入D5输入端,作为D1、D2、D3的“清零” 脉冲信号。

脉冲展宽电路的特点

从上面的电路原理图和时序仿真波形图可以看出,利用isp器件构成的脉冲展宽电路具有如下特点:

(1)对输入脉冲信号的宽度适应能力较强。最窄可以到ns量级,因其仅与所采用的CPLD器件的工作速度有关。因此,特别适用于对窄脉冲雷达信号进行展宽。(2)展宽脉冲的宽度可以根据需要任意设定,亦可改变电路(例如与单片机相结合)?使其做到现场实时自动加载。(3)展宽脉冲的宽度稳定、准确。因无外接R、C定时元器件,其脉冲宽度仅与所采用的时钟频率和CPLD器件的性能有关。(4)展宽脉冲的前沿与输入窄脉冲的前沿之间的延迟时间基本恒定,即这个延迟时间是信号从D1的时钟输入端到D1的输出端Q的延迟时间。(5)电路调试简单。当需要调整展宽脉冲的宽度时,不需更换元器件,只要将重新设计、仿真通过后的JED熔丝图文件,通过加载电缆适时加载到CPLD器件内即可。这在对电路进行高、低温等例行试验时变得极为简单、方便和高效。

从图1还可以看出,这种单稳态脉冲展宽电路产生的脉宽精度是小于“+”或“-”一个CP时钟周期。若要提高展宽脉冲宽度的精度,可以采用图 3所示的改进型单稳态脉冲展宽电路,即在图1电路的基础上,将进入isp器件的时钟脉冲信号经反相器反相后,作为另一个相同脉宽控制电路的计数器的时钟脉冲。

这样,如果输入的窄脉冲在时钟脉冲的前半周期内到达,则由D6、D7、D8组成的脉宽控制电路先开始计数;如果输入的窄脉冲在时钟脉冲的后半周期内到达,则由D2、D3、D4组成的脉宽控制电路先开始计数。由于上下两个脉宽控制电路的时间计数值是相同的,故先计数则先结束,后计数则后结束。两者之差为半个时钟周期值。展宽脉冲信号的宽度,始于输入窄脉冲的前沿,而止于两个脉宽控制电路中最早结束定时计数的那个计数器的进位脉冲所产生的“清零”脉冲信号。因此,不管输入窄脉冲信号的前沿与时钟脉冲的相对时间关系如何,其输出展宽脉冲的宽度为脉宽控制电路的时间计数值与输入窄脉冲的前沿加上时钟脉冲的前沿或后沿之差。尽管脉宽控制计数电路的时钟脉冲周期没有改变,但由于输入窄脉冲的前沿与控制计数电路时钟脉冲上升沿的最大时差只有半个时钟脉冲周期(注意:时钟脉冲信号的占空比为1:1),故展宽脉冲信号的宽度误差小于"+"或“-”半个时钟脉冲周期。图4是图3所示电路的时序仿真波形图。

在CPLD器件中,可以将输入的窄脉冲展宽;当然,亦可以将输入的宽脉冲变窄;或使其具有象54HC123单稳态触发器那样的延时和可重触发功能。用CPLD器件可以实现常用单稳态电路的功能;用FPGA器件,同样可以实现上述功能。采用何种器件何种方法,主要看电路设计的技术指标,设计者所具有的设计环境和周围电路中所使用器件的类型。总之,随着大规模集成电路产品性能的不断提高、体积的不断减小和成本的不断降低,基于CPLD器件设计的单稳态电路的性能将大大提高,这种单稳态电路的应用亦将越来越广泛。

以上便是此次小编带来的“电子电路设计”相关内容,通过本文,希望大家对CPLD单稳态电子电路设计具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭