当前位置:首页 > 物联网 > 感知层
[导读]前段时间,三星最新推出的三星HM1传感器相信很多人都有所了解。这款传感器可以带来比较明显的解析力增益。在大面积和高分辨率的显示屏上观看时,这款传感器具有十分明显的高频信息还原优势。

前段时间,三星最新推出的三星HM1传感器相信很多人都有所了解。这款传感器可以带来比较明显的解析力增益。在大面积和高分辨率的显示屏上观看时,这款传感器具有十分明显的高频信息还原优势。

该传感器是建立在0.8微米单像素边长基础上的总面积扩容,来到了1/1.33英寸,所以LW/PH值自然会有所增加,至于像素尺寸的问题,结合奈奎斯特采样定律的基本诉求:采样频率需要2倍于原始信号频率才能有效还原,即便是可见光的最长波长780nm,以F1.8光圈理想镜头进行成像,衍射图案峰值间距也有1.71微米左右,0.8微米像素略高于奈奎斯特采样标准,所以在制造工艺有保障的前提下,像素的确是越小越好。

事实上,对手机成像真正的限制是镜头,1/1.33英寸的成像圈直径来到了12mm,与15.86mm得1英寸已经比较接近,而大家如果仔细观察市面上的1英寸相机不难发现,它们的镜头设计体型都远远大于手机,所以如果单纯比光学素质,1英寸相机因自由度更高所以胜面很大,也正因为大底手机传感器对镜头光学总长有着非常苛刻的要求,所以一般来说手机成像系统的设计是光学与数字校正的联动,以此来弥补较低硬件天花板带来的不足。

基本上1亿像素级别的手机摄像头因为对像差校正提出了更高的要求,所以一般会标配8P镜头,也就是总计8片塑料镜片。对于光学设计来说,镜片多意味着校正手段的增多,比如后组的增多有利于降低第一镜片的焦距,避免光焦度过于集中,利于提高成像质量,除此之外还有一个重要的作用就是改进新增的中后段镜组物像两面矢高比例,扩大像方视场角,增大像高,以满足大底成像需求。

除此之外,为提高性能上限,再加上丙烯酸酯、聚苯乙烯等塑料模压加工的成本也相对较低,所以手机镜头的每一片镜片基本上都是双旋转对称非球面(而且8片从绝对量来说也不算多),也在尽力拔高光学上限。

大体来说,这枚新镜头在HM1上的表现还是很不错的,大家如果有注意到的话,在此前的视频测试中我都截取的边缘部分,即便如此1.08亿也是非常能打,而且拍摄时滞其实也很短,并没有什么卡顿感。而且这颗镜头的暗角控制做得很好,即便是ISO 640的弱光拍摄,RAW文件极限边缘也没有出现强吃动态范围而激增的噪声:

这应该会出乎很多人预料,但对于8P设计+微透镜平移技术结合来说,新一代手机摄像头模组有此表现也算常规操作了。

而且它强光下输出RAW文件的后期空间也还不错,高光-100、暗部+100这种操作也算是游刃有余:

因为它的机内JPEG输出会狂拉锐度并大幅降噪,所以会丢失不少暗部信息和高频纹理,有工夫的话完全可以自己调。当然,如果只是在手机上看图像的话就无所谓了,随意使用即可,不过即便1.08亿输出也能做机内HDR,这一点倒是很方便,毕竟1.08亿不能输出RAW,后期空间要小不少。

三星自用的HM1基于Nonacell技术,即支持9个像素合并为1,所以默认状态下的静态输出为10800万/9=1200万,合并像素的最大目的是提高信噪比,但它的实现前提是在以读取噪声为主导的拍摄环境,也就是弱光条件下。

像素合并有几种方式,主要按信号输出前与输出后来区分,信号输出前就进行合并的方案处于电荷域,信号输出后合并的方案则是电压域或数字域,它们的区别在于:假设对传感器进行均匀曝光且所有通道量子效率完全相同,那么无论哪种合并方式,n x n个像素的合并都意味着信号值增加了n x n倍,但电荷域n x n个像素合并输出的读取噪声只有1个单位,所以合并后的信噪比增益为n^2倍;而电压域或数字域因为是先读出、后合并,就意味着读取噪声也会与信号同步增加,其增幅为n x n的平方根,也就是n个单位,这样一来,信噪比的增益幅度就是n x n/n=n倍。

换言之,9合1合并如果是电荷域,读取噪声信噪比增益就是足足9倍,电压域或数字域就只有3倍,据我所知,三星目前合并像素型手机图像传感器都是共享浮置扩散电容设计,这就意味着它属于电荷域像素合并,显然,因为全像素输出需要排队迁移电子,所以读出速度会相对慢一些,这也是为什么很多高像素传感器全像素输出时无法连拍的原因。而电压域或数字域的像素合并案例是索尼6100万像素全画幅IMX455,它提供了2x2和3x3合并模式,对于以全像素输出为主要用途的传统相机来说,做此选择也属正常。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭