当前位置:首页 > 工业控制 > 工业控制技术文库
[导读] 一、围绕制造的本质解决问题 对于制造业企业而言,运营水平可以用盈利能力来评估,进而分解为高成本效率的生产出合格产品,即,稳定的产品品质以及成本的不断下降,快速的交付能力,即,质量,成本与

一、围绕制造的本质解决问题

对于制造业企业而言,运营水平可以用盈利能力来评估,进而分解为高成本效率的生产出合格产品,即,稳定的产品品质以及成本的不断下降,快速的交付能力,即,质量,成本与交付是制造业的核心话题,而对于智能制造则在于解决“全局协同”过程中的材料、时间、能耗等的优化,进而进一步提升成本效率空间。

就产品的加工品质、速度而言,在成本约束条件下已经发挥到极致,因此,新的优化空间来自于“集成”与“协同”,另一个维度则在于个性化带来的挑战,为了解决协同的成本优化以及个性化给生产带来的成本效率难题,信息流汇集并进行全局优化是边缘计算的核心问题。

图1-回归制造的本质解决运营水平问题(优也信息科技)

如图1,来自优也大数据傅源女士,数据包括了基础的生产经营改善、运营中的、机器设备的健康管理、然后到全局寻优,再到最终的自主化,具有学习分析与决策能力,这个过程中会遇到基于数据的各种任务。这些任务就是边缘计算所聚焦的,除了基础的控制外,包括数据的连接、汇集、存储、呈现、学习等各种层级的问题,需要由边缘计算来进行完成,因此,边缘计算并非是一个计算问题,而是围绕任务而一系列的架构与规范接口问题。

二、数据连接,打通IT与OT的关键

不得不说,在推进边缘计算中遇到的第一个障碍是“连接问题”,IT世界访问OT世界并非想象那么容易,即使在总线技术已经发展的30年后,图2是世界经济论坛2014年对北美、欧洲、总体关于IoT推进的难点的调研评估,虽然并非是新的结果,但就实而言,却并未过时。

图2-世界经济论坛2014年就IoT发展的难点调研报告

缺乏互操作标准是影响数据“流畅”访问的关键,在单独的机器上,各个现场总线或基于实时以太网的数据都可以流畅访问,但是,在机器与机器之间,需要“协同”的时候,数据却被不同的总线割裂为孤岛,而打破孤岛似乎提了很多年,然而,在现实的工厂中仍然是无法达到的。

图3-现场总线发展的发展

对于IT厂商而言访问OT的设备遇到总线的障碍,因为你得为每个总线开发接口转换硬件,并写驱动,即使实时以太网在物理上保持了一致,但依然需要写变量地址表的映射与读取程序,而这一切使得IT与OT之间的访问变得没有“经济性”—这是非常关键的一点,技术能否被推动的关键正在于此,若缺乏经济性,那么无论是技术提供商还是用户,都无法从中获益,那么就无法推进。

OPC UA和TSN被赋予了这一历史责任,作为IEC62451标准,OPC UA被RAMI4.0、IIRA等制定为语义互操作层面的规范,它解决了异构网络中的各个主体之间可以通过相同的语义对话。

TSN则解决了在网络中,OT周期性控制任务所需的实时数据传输机制,以及IT大容量非周期性数据的传输问题,通过VLAN交换机,在TSN网络可以传输两种不同的数据,而离开TSN网络则可以通过标准的Internet方式传输数据,这带来最大的好处在于IT可以对OT的透明访问。

图3反映了这一过程的发展。

三、边缘计算的垂直层级

图4则是一个现场采集站(基于OPC UA TSN)的边缘节点(Edge Node)到一个控制(Embedded Edge Controller),它可以实现安全的数据安与汇总到边缘计算服务器(Edge Computing)然后通过OPC UA/MQTT等到云端的垂直应用过程。

图4-边缘计算的垂直架构与技术应用

除了物理可见的实现架构,数据如何被应用也是整个问题的关键,对于工厂而言,边缘计算主要在于实现本地的一些应用,这可能包括的应用如下:

(1).数据汇集与协同的应用

对于最为典型的工厂应用如OEE计算,需要将品质、机器运行时间相关参数、稼动率等计算并实时显示给工厂管理级,以便全局观测状态。

(2).规划与分析问题

对于很多工厂应用而言,需要考虑在线的规划问题,如玻璃切割,如何在线检测,划分等级,并对其进行按照CRM中的系统订单进行规划,以便把不同等级的玻璃按照需要进行切割处理,并分流到不同的包装线,而对于印刷工厂而言,如何把不同订单实现重组,以获得最小的材料浪费,这些都是边缘侧的应用需要解决的问题。

(3).数据呈现问题

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭