当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]在Linux虚拟化技术中,网络级别上最重要的三项技术是网络名称空间、线对和Veth桥接器或虚拟交换机技术。 今天,我们将指导您学习Linux网络虚拟化技术。

在Linux虚拟化技术中,网络级别上最重要的三项技术是网络名称空间、线对和Veth桥接器或虚拟交换机技术。 今天,我们将指导您学习Linux网络虚拟化技术。

我们首先了解下Network Namespace,它是由Linux内核提供,是实现网络虚拟化的重要功能。通过创建多个隔离的网络空间,实现网络资源的隔离。

不同的Network Namespace的资源互相不可见,彼此之间无法通信。如下图所示:

Network Namespace

ip netns命令

Network Namespace是Linux内核提供的功能,本文借助ip命令来完成各种操作。ip命令来自于iproute2安装包,一般系统默认安装,如果没有的话,读者可自行安装。

ip命令管理的功能很多,和Network Namespace有关的操作都在其子命令ip netns下进行的,可以通过ip netns help查询命令帮助信息

[root@qll253 ~]# ip netns helpUsage: ip netns list

ip netns add NAME

ip netns set NAME NETNSID

ip [-all] netns delete [NAME]

ip netns identify [PID]

ip netns pids NAME

ip [-all] netns exec [NAME] cmd ...

ip netns monitor

ip netns list-id

创建Network Namespace

1、通过 ip netns add 命令创建一个名为ns0的网络命名空间:

[root@1ll253 ~]# ip netns add ns02、查询命名空间

[root@1ll253 ~]# ip netns listns0

3、命名空间所在目录

[root@1ll253 ~]# ls /var/run/netns/ns0

注意:新创建的 Network Namespace 会出现在/var/run/netns/目录下。如果需要管理其他不是 ip netns 创建的 network namespace,只要在这个目录下创建一个指向对应 network namespace 文件的链接即可。

操作Network Namespace

对于每个 Network Namespace 来说,它会有自己独立的网卡、路由表、ARP 表、iptables 等和网络相关的资源。ip命令提供了ip netns exec命令可以在对应的 Network Namespace 中执行命令。

1、查看网络命名空间 ns0 的网卡信息

[root@1ll253 ~]# ip netns exec ns0 ip addr1: lo:mtu 65536 qdisc noop state DOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

每个 namespace 在创建时会自动创建一个回环接口lo,默认不启用。它的作用和Linux系统中默认看到的lo一样,都是为了实现loopback通信,如果希望lo口能工作,可以通过下面的步骤2启用它。

2、启用lo回环网卡:

[root@1ll253 ~]# ip netns exec ns0 ip link set lo up再次检查回环网卡状态:

[root@1ll253 ~]# ip netns exec ns0 ip addr1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

会发现此时回环口卡处于UP状态,并且系统分配127.0.0.1/8的ip地址。

3、在 ns0 中打开一个shell终端

[root@1ll253 ~]# ip netns exec ns0 /bin/bash[root@1ll253 ~]# ip addr1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever

[root@1ll253 ~]# exitexit

通过执行ip netns exec ns0 /bin/bash进入ns0的shell终端,后面所有的命令都在这个Network Namespace中执行,好处是不用每次执行命令时都要带上ip netns exec ,缺点是我们无法清楚知道自己当前所在的shell,容易混淆。

可以采用下面的方法解决:

[root@1ll253 ~]# ip netns exec ns0 /bin/bash --rcfile <(echo "PS1=\"ns0> \"")ns0>

Network Namespace 之间的通信

默认情况下,network namespace 是不能和主机网络,或者其他 network namespace 通信的。

可以使用 Linux 提供的veth pair来完成通信,veth pair你可以理解为使用网线连接好的两个接口,把两个端口放到两个namespace中,那么这两个namespace就能打通。

接下来我们通过实验进行验证:

1、创建veth pair

[root@1ll253 ~]# ip link add type veth

[root@1ll253 ~]# ip link14: veth0@veth1: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 06:17:62:85:64:fc brd ff:ff:ff:ff:ff:ff

15: veth1@veth0: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether fe:9a:48:e4:a3:99 brd ff:ff:ff:ff:ff:ff

[root@1ll253 ~]#

可以看到,此时系统中新增了一对veth pair:veth0和veth1,需要记住的是veth pair无法单独存在,删除其中一个,另一个也会自动消失。

如果需要指定veth pair两个端点的名称,可以使用下面的命令:

[root@1ll253 ~]# ip link add veth001 type veth peer name veth002[root@1ll253 ~]# ip link12: veth002@veth001: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether aa:3e:04:da:a7:69 brd ff:ff:ff:ff:ff:ff

13: veth001@veth002: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 3e:5d:5f:4e:06:2b brd ff:ff:ff:ff:ff:ff

2、创建Network Namespace

我们已创建了一个名为ns0的Network Namespace,下面再创建一个名称为ns1的网络命名空间。

[root@1ll253 ~]# ip netns add ns1[root@1ll253 ~]# ip netns listns1

ns0

3、把veth pair分别加入到这两个namespace中

将veth0加入到ns0,将veth1加入到ns1,如下所示:

[root@1ll253 ~]# ip link set veth0 netns ns0[root@1ll253 ~]# ip link set veth1 netns ns14、分别为这对veth pair配置上ip地址,并启用

1)为veth0配置IP,并启用该虚拟网卡

[root@1ll253 ~]# ip netns exec ns0 ip addr add 192.168.1.1/24 dev veth0[root@1ll253 ~]# ip netns exec ns0 ip link set veth0 up2)为veth1配置IP,并启用该虚拟网卡

[root@1ll253 ~]# ip netns exec ns1 ip addr add 192.168.1.2/24 dev veth1[root@1ll253 ~]# ip netns exec ns1 ip link set veth1 up5、查看这对veth pair的状态

6、验证两个Network Namespace之间的互通

可以看到,veth pair成功实现了两个不同Network Namespace之间的网络交互。

网桥

虽然veth pair可以实现两个 Network Namespace 之间的通信,但 veth pair 有一个明显的缺陷,就是只能实现两个网络接口之间的通信。如果多个network namespace需要进行通信,则需要借助bridge。

下面我们通过实验来进行讲解:

准备步骤:还原网络环境

为方便接下来的实验,我们把刚刚创建的Network Namespace及veth pair删除,保证纯净的网络环境。

[root@1ll253 ~]# ip netns delete ns0[root@1ll253 ~]# ip netns delete ns11、创建3个Network Namespace

[root@1ll253 ~]# ip netns add ns0[root@1ll253 ~]# ip netns add ns1[root@1ll253 ~]# ip netns add ns22、创建3对veth pair

[root@1ll253 ~]# ip link add type veth[root@1ll253 ~]# ip link16: veth0@veth1: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether ba:fa:d6:14:e1:32 brd ff:ff:ff:ff:ff:ff

17: veth1@veth0: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether a2:ef:d9:a5:96:51 brd ff:ff:ff:ff:ff:ff

18: veth2@veth3: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether a2:5b:e7:9e:b1:55 brd ff:ff:ff:ff:ff:ff

19: veth3@veth2: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 92:91:67:ab:69:ac brd ff:ff:ff:ff:ff:ff

20: veth4@veth5: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 8a:c8:35:f6:11:3f brd ff:ff:ff:ff:ff:ff

21: veth5@veth4: mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 2a:b7:82:d4:49:d5 brd ff:ff:ff:ff:ff:ff

3、创建网桥

// 创建名为 docker0 的网桥

[root@1ll253 ~]# ip link add docker0 type bridge

//启动 docker0 网桥

[root@1ll253 ~]# ip link set dev docker0 up

//为docker0网桥配置IP

[root@1ll253 ~]# ifconfig docker0 172.17.0.1/16此时可以通过ifconfig命令查看:

4、绑定网口

Network Namespace、veth pair、bridge 都创建完毕,下面通过命令将每对veth pair的一端绑定在network namespace,另一端绑定在docker0网桥上,用于实现网络互通

1)配置第一个网络命名空间 ns0

// 将veth1添加进ns0

[root@1ll253 ~]# ip link set dev veth1 netns ns0//将veth1重命名为eth0

[root@1ll253 ~]# ip netns exec ns0 ip link set dev veth1 name eth0//为ns0中的eth0配置ip

[root@1ll253 ~]# ip netns exec ns0 ip addr add 172.17.0.101/16 dev eth0// 启动ns0中的eth0网卡

[root@1ll253 ~]# ip netns exec ns0 ip link set dev eth0 up// 将veth0添加加网桥docker0

[root@1ll253 ~]# ip link set dev veth0 master docker0// 启动veth0网卡

[root@1ll253 ~]# ip link set dev veth0 up2)配置第二个网络命名空间 ns1

[root@1ll253 ~]# ip link set dev veth3 netns ns1[root@1ll253 ~]# ip netns exec ns1 ip link set dev veth3 name eth0[root@1ll253 ~]# ip netns exec ns1 ip addr add 172.17.0.102/16 dev eth0[root@1ll253 ~]# ip netns exec ns1 ip link set dev eth0 up[root@1ll253 ~]# ip link set dev veth1 master docker0[root@1ll253 ~]# ip link set dev veth3 up3)配置第三个网络命名空间 ns2

[root@1ll253 ~]# ip link set dev veth5 netns ns2[root@1ll253 ~]# ip netns exec ns2 ip link set dev veth5 name eth0[root@1ll253 ~]# ip netns exec ns2 ip addr add 172.17.0.103/16 dev eth0[root@1ll253 ~]# ip netns exec ns1 ip link set dev eth0 up[root@1ll253 ~]# ip link set dev veth5 master docker0[root@1ll253 ~]# ip link set dev veth5 up5、

和网桥有关的操作还可以使用brctl,这个命令来自 bridge-utils安装包。这里使用brctl show来查询网桥docker0下绑定的网卡。

6、验证多个namespace之间的通信

// 进入ns0 bash终端

[root@1ll253 ~]# ip netns exec ns0 /bin/bash --rcfile <(echo "PS1=\"ns0> \"")

// ping 网桥docker0

ns0> ping -c 1 172.17.0.1PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.

64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.033 ms...

// ping ns1上的eth0网卡

ns0> ping -c 1 172.17.0.102

PING 172.17.0.102 (172.17.0.102) 56(84) bytes of data.

64 bytes from 172.17.0.102: icmp_seq=1 ttl=64 time=0.049 ms...

// ping ns2上的eth0网卡ns0>

ping -c 1 172.17.0.103PING 172.17.0.103 (172.17.0.103) 56(84) bytes of data.

64 bytes from 172.17.0.103: icmp_seq=1 ttl=64 time=0.038 ms

...


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭