当前位置:首页 > 芯闻号 > 充电吧
[导读]2020年5月31日,美国太空计划创造了历史,SpaceX DM-2龙飞船(Crew Dragon)上的NASA宇航员罗伯特·本肯(Robert Behnken)和格拉斯·赫利(Douglas Hur

2020年5月31日,美国太空计划创造了历史,SpaceX DM-2龙飞船(Crew Dragon)上的NASA宇航员罗伯特·本肯(Robert Behnken)和格拉斯·赫利(Douglas Hurley)抵达国际空间站(ISS),这是商业航天器首次将宇航员运送到国际空间站。

国际空间站是企业、政府和大学的研究实验室。一段时间以来,国际空间站的宇航员已在该实验室为各个组织进行了大量创新实验。

例如,最近在国际空间站上进行了世界上第一个基于的EUV光刻实验,可能为太空高级芯片的制造奠定基础。


图片来源:flickr

2019年11月2日,诺斯罗普·格鲁曼公司的天鹅座(Cygnus)飞船从弗吉尼亚州的瓦罗普斯飞行研究所 (Wallops Flight Facility)发射升空。航天器携带来自Astrileux( 一家为制造7nm以下集成电路提供光学技术的公司)的有效载荷进入国际空间站。有效载荷是由太空科学发展中心(CASIS)和纳米机架合作进行的此外,该航天器还载有20多种其他有效载荷。

去年11月,国际空间站的宇航员利用来自Astrileux的有效载荷,在国际空间站的外部平台上进行了光刻实验。实验围绕Astrileux的新EUV光学镀膜技术进行,目的是确定是否有可能使用Astrileux的EUV涂层捕获太阳EUV辐射。这些材料构成了波长为13.5nm的EUV光刻工具的光学器件和反射镜的基础。

实验证明,能用Astrileux的EUV涂层捕获太阳EUV辐射。有朝一日,来自Astrileux的材料能够成为一类新型的太空仪器。它还为未来基于EUV的空间光刻技术奠定了基础,该技术使用太阳辐射的能量作为光源。

国际空间站最初于2000年投入使用,它是一个模块化的太空实验室,是美国、俄罗斯、日本、欧洲和加拿大的航空航天机构之间的合作。在国际空间站上,宇航员进行天文学、宇宙学、气象学和物理学方面的科学实验。

制作芯片和组件是太空中另一个有趣的话题。“实现人类在天空中长期生存这个目标,需要建造一个电子制造的生态系统,以便为国际空间站上的本地化,自我维持社区提供支持,” Astrileux首席执行官Supriya Jaiswal说。“工作中的宇航员能够根据需要快速对电子产品进行原型制作,从而在国际空间站上创造新的功能,包括增强计算能力和建造新的智能设备的能力,以及快速修复可能发生在高风险操作中的陈旧或被毁坏的电子设备。”

很难想象一个有大型EUV设备的工厂将在国际空间站甚至在月球或火星上建造。但是在将来,在太空中发展小型晶圆厂或微型晶圆厂是可行的。

为此,航天器或太空殖民地将需要3D打印机和fab工具,以及对晶片进行图形化(pattern)的光刻技术。这就是需要与Astrileux、太空科学发展中心以及纳米舱(NanoRacks)合作的地方。太空科学发展中心是国际空间站的美国国家实验室(美国政府资助的实验室)的管理者。

纳米舱这家航空航天公司在国际空间站的美国国家实验室安装了两个研究平台。根据纳米舱的说法,每个平台最多可容纳16个立方体卫星(cubesat)外形尺寸的有效载荷。每个立方体卫星的有效载荷为一个四英寸的立方体。

为了进行实验,Astrileux设计了有效载荷,并合并到纳米舱的立方体卫星中。立方体卫星包括Astrileux有效载荷的内部和外部组件。

去年11月,国际空间站的宇航员将Astrileux的有效载荷安装在气闸中,并自动装载到外部平台上,然后实验被激活。立方体卫星的一部分暴露在阳光下,使Astrileux的EUV涂层捕获足够的太阳辐射。该项目研究了EUV材料在极端辐射环境下如何能经受住降解。

在实验中,Astrileux的材料成功地展示了EUV的波长范围(10nm-20nm)。Jaiswal说:“ Astrileux创造了可以在极端辐射环境中生存的新型EUV光学涂层,并可以有效捕获13.5nm和其他EUV波长的EUV辐射。”

鉴于这一结果,有朝一日,这些材料也会有新的应用。首先,它可以为能够捕获EUV辐射的新型空间仪器铺平道路。Jaiswal说:“ Astrileux的新型EUV光学器件为空间探索、太阳辐射成像、望远镜、星系统和太空系统中使用的光学系统的新设计奠定了基础。”

还有其他一些新的和未来的应用。 “该实验的目的是为7nm及以下的太空电子制造奠定基础。” 贾伊斯瓦尔说:“ Astrileux有效载荷在绕地球飞行时测量并捕获13.5nm光刻波长下的EUV太阳辐射。通常,具有强大光源的EUV光刻工具用于以所需的晶圆产量对晶圆进行图形化。但是,这种有效载荷可以测量并捕获可用于对硅晶片进行构图的自然太阳EUV辐射。”

传统的EUV光学器件可能需要花费100天以上的时间来对单个晶片进行图形化,而Astrileux的光学器件最终可以将图形化时间减少到不到10个小时。反过来,这使得在空间中的小型社区中进行晶圆图形化和制造成为可行的概念。

同时,在地球上,一些铸造厂已将EUV光刻技术投入7nm和5nm的生产,并进行了3nm的研发。Astrileux的新型EUV涂层也是生产工厂中EUV光刻扫描仪的理想选择。

本文编译自https://semiengineering.com/manufacturing-bits-june-2-2/

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭