当前位置:首页 > 电源 > 电源系统设计
[导读]初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数


初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路


中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。


高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业——电子产品和工业控制设备的开发设计工程师将是您的首选职业。


一、桥式整流电路



注意要点:


1、二极管的单向导电性:


二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。


伏安特性曲线:



理想开关模型和恒压降模型:


理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5V。


2、桥式整流电流流向过程:


当u2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载RL是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2截止,负载RL上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。


3、计算:


Vo, Io,二极管反向电压:


Uo=0.9U2, Io=0.9U 2/RL,URM=√2 U 2


二、电源滤波器


注意要点:


1、电源滤波的过程分析:


电源滤波是在负载RL两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。

波形形成过程:


输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL,忽略Ri压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u 0变化平缓。当ωt=ωt2时,u 2=u 0, ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。ωt=ωt3时有u 2=u 0,ωt3后,电容通过RL放电。如此反复,周期性充放电。由于电容C的储能作用,RL上的电压波动大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。


2、计算:


滤波电容的容量和耐压值选择


电容滤波整流电路输出电压Uo在√2U 2~0.9U 2之间,输出电压的平均值取决于放电时间常数的大小。


电容容量RLC≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步近似为Uo≈1.2U2整流管的最大反向峰值电压URM=√2U 2,每个二极管的平均电流是负载电流的一半。


三、信号滤波器



注意要点:


1、信号滤波器的作用:


把输入信号中不需要的信号成分衰减到足够小的程度,但同时必须让有用信号顺利通过。


与电源滤波器的区别和相同点:


两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。


相同点:都是用电路的幅频特性来工作。


2、LC 串联和并联电路的阻抗计算:


串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC);

并联时电路阻抗为Z=1/jωC∥(R+jωL)=


考滤到实际中,常有R<<ωL,所以有Z≈



幅频关系和相频关系曲线:



3、画出通频带曲线:


计算谐振频率:fo=1/2π√LC


四、微分和积分电路


注意要点:

1、电路的作用,与滤波器的区别和相同点;


2、微分和积分电路电压变化过程分析,画出电压变化波形图;


3、计算:时间常数,电压变化方程,电阻和电容参数的选择。


五、共射极放大电路


注意要点:

1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;


2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;


3、静态工作点的计算、电压放大倍数的计算。


六、分压偏置式共射极放大电路



注意要点:

1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;


2、电流串联负反馈过程的分析,负反馈对电路参数的影响;


3、静态工作点的计算、电压放大倍数的计算;


4、受控源等效电路分析。


七、共集电极放大电路(射极跟随器)


注意要点:

1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图,电路的输入和输出阻抗特点;


2、电流串联负反馈过程的分析,负反馈对电路参数的影响;


3、静态工作点的计算、电压放大倍数的计算。


八、电路反馈框图


注意要点:

1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法;


2、带负反馈电路的放大增益;


3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。


九、二极管稳压电路



注意要点:

1、稳压二极管的特性曲线;


2、稳压二极管应用注意事项;


3、稳压过程分析。


十、串联稳压电源


注意要点:

1、串联稳压电源的组成框图;


2、每个元器件的作用;稳压过程分析;


3、输出电压计算。


十一、差分放大电路


注意要点:


1、电路各元器件的作用,电路的用途、电路的特点;


2、电路的工作原理分析。如何放大差模信号而抑制共模信号;


3、电路的单端输入和双端输入,单端输出和双端输出工作方式。


十二、场效应管放大电路


注意要点:

1、场效应管的分类,特点,结构,转移特性和输出特性曲线;


2、场效应放大电路的特点;


3、场效应放大电路的应用场合。


十三、选频(带通)放大电路


注意要点:

1、每个元器件的作用,选频放大电路的特点,电路的作用;


2、特征频率的计算,选频元件参数的选择;


3、幅频特性曲线。


十四、 运算放大电路


注意要点:

1、理想运算放大器的概念,运放的输入端虚拟短路,运放的输入端的虚拟断路;


2、反相输入方式的运放电路的主要用途,输入电压与输出电压信号的相位关系;


3、同相输入方式下的增益表达,输入阻抗,输出阻抗。


十五、差分输入运算放大电路


注意要点:

1、差分输入运算放大电路的的特点,用途;


2、输出信号电压与输入信号电压的关系式。


十六、电压比较电路


注意要点:

1、电压比较器的作用,工作过程;


2、比较器的输入-输出特性曲线图;


3、如何构成迟滞比较器。


十七、RC振荡电路



注意要点:

1、振荡电路的组成,作用,起振的相位条件,起振和平衡幅度条件;


2、RC电路阻抗与频率的关系曲线,相位与频率的关系曲线;


3、RC振荡电路的相位条件分析,振荡频率,如何选择元器件。


十八、LC振荡电路


注意要点:

1、振荡相位条件分析;


2、直流等效电路图和交流等效电路图;


3、振荡频率计算。


十九、石英晶体振荡电路


注意要点:

1、石英晶体的特点,石英晶体的等效电路,石英晶体的特性曲;


2、石英晶体振动器的特点;


3、石英晶体振动器的振荡频率。


二十、功率放大电路



注意要点:

1、乙类功率放大器的工作过程以及交越失真;


2、复合三极管的复合规则;


3、甲乙类功率放大器的工作原理,自举过程,甲类功率放大器,甲乙类功率放大器的特点。


-END-

原理图就得这么画!看完能力飞跃提升! 超全!元器件封装查询图表(收藏) 牛人总结的开关电源电路图,必须收藏!


免责声明:整理本文出于传播相关技术知识,版权归原作者所有。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

电源系统设计

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭