当前位置:首页 > 单片机 > C语言与CPP编程
[导读]c++11关于并发引入了好多好东西,这里按照如下顺序介绍: std::thread相关 std::mutex相关 std::lock相关 std::atomic相关 std::call_once相关 volatile相关 std::condition_variable相关 std::future相关 async相关 std::thread相关 c++11之前你可能使用pthr


c++11关于并发引入了好多好东西,这里按照如下顺序介绍:

  • std::thread相关

  • std::mutex相关

  • std::lock相关

  • std::atomic相关

  • std::call_once相关

  • volatile相关

  • std::condition_variable相关

  • std::future相关

  • async相关

std::thread相关

c++11之前你可能使用pthread_xxx来创建线程,繁琐且不易读,c++11引入了std::thread来创建线程,支持对线程join或者detach。直接看代码:

#include <iostream>#include <thread>
using namespace std;
int main() { auto func = []() { for (int i = 0; i < 10; ++i) { cout << i << " "; } cout << endl; }; std::thread t(func); if (t.joinable()) { t.detach(); } auto func1 = [](int k) { for (int i = 0; i < k; ++i) { cout << i << " "; } cout << endl; }; std::thread tt(func1, 20); if (tt.joinable()) { // 检查线程可否被join tt.join(); } return 0;}

上述代码中,函数func和func1运行在线程对象t和tt中,从刚创建对象开始就会新建一个线程用于执行函数,调用join函数将会阻塞主线程,直到线程函数执行结束,线程函数的返回值将会被忽略。如果不希望线程被阻塞执行,可以调用线程对象的detach函数,表示将线程和线程对象分离。

如果没有调用join或者detach函数,假如线程函数执行时间较长,此时线程对象的生命周期结束调用析构函数清理资源,这时可能会发生错误,这里有两种解决办法,一个是调用join(),保证线程函数的生命周期和线程对象的生命周期相同,另一个是调用detach(),将线程和线程对象分离,这里需要注意,如果线程已经和对象分离,那我们就再也无法控制线程什么时候结束了,不能再通过join来等待线程执行完。

这里可以对thread进行封装,避免没有调用join或者detach可导致程序出错的情况出现:

class ThreadGuard { public: enum class DesAction { join, detach };
ThreadGuard(std::thread&& t, DesAction a) : t_(std::move(t)), action_(a){};
~ThreadGuard() { if (t_.joinable()) { if (action_ == DesAction::join) { t_.join(); } else { t_.detach(); } } }
ThreadGuard(ThreadGuard&&) = default; ThreadGuard& operator=(ThreadGuard&&) = default;
std::thread& get() { return t_; }
private: std::thread t_; DesAction action_;};
int main() { ThreadGuard t(std::thread([]() { for (int i = 0; i < 10; ++i) { std::cout << "thread guard " << i << " "; } std::cout << std::endl;}), ThreadGuard::DesAction::join); return 0;}

c++11还提供了获取线程id,或者系统cpu个数,获取thread native_handle,使得线程休眠等功能

std::thread t(func);cout << "当前线程ID " << t.get_id() << endl;cout << "当前cpu个数 " << std::thread::hardware_concurrency() << endl;auto handle = t.native_handle();// handle可用于pthread相关操作std::this_thread::sleep_for(std::chrono::seconds(1));

std::mutex相关

std::mutex是一种线程同步的手段,用于保存多线程同时操作的共享数据。

mutex分为四种:

  • std::mutex:独占的互斥量,不能递归使用,不带超时功能

  • std::recursive_mutex:递归互斥量,可重入,不带超时功能

  • std::timed_mutex:带超时的互斥量,不能递归

  • std::recursive_timed_mutex:带超时的互斥量,可以递归使用

拿一个std::mutex和std::timed_mutex举例吧,别的都是类似的使用方式:

std::mutex:

#include <iostream>#include <mutex>#include <thread>
using namespace std;std::mutex mutex_;
int main() { auto func1 = [](int k) { mutex_.lock(); for (int i = 0; i < k; ++i) { cout << i << " "; } cout << endl; mutex_.unlock(); }; std::thread threads[5]; for (int i = 0; i < 5; ++i) { threads[i] = std::thread(func1, 200); } for (auto& th : threads) { th.join(); } return 0;}

std::timed_mutex:

#include <iostream>#include <mutex>#include <thread>#include <chrono>
using namespace std;std::timed_mutex timed_mutex_;
int main() { auto func1 = [](int k) { timed_mutex_.try_lock_for(std::chrono::milliseconds(200)); for (int i = 0; i < k; ++i) { cout << i << " "; } cout << endl; timed_mutex_.unlock(); }; std::thread threads[5]; for (int i = 0; i < 5; ++i) { threads[i] = std::thread(func1, 200); } for (auto& th : threads) { th.join(); } return 0;}

std::lock相关

这里主要介绍两种RAII方式的锁封装,可以动态的释放锁资源,防止线程由于编码失误导致一直持有锁。

c++11主要有std::lock_guard和std::unique_lock两种方式,使用方式都类似,如下:

#include <iostream>#include <mutex>#include <thread>#include <chrono>
using namespace std;std::mutex mutex_;
int main() { auto func1 = [](int k) { // std::lock_guard<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_); for (int i = 0; i < k; ++i) { cout << i << " "; } cout << endl; }; std::thread threads[5]; for (int i = 0; i < 5; ++i) { threads[i] = std::thread(func1, 200); } for (auto& th : threads) { th.join(); } return 0;}

std::lock_gurad相比于std::unique_lock更加轻量级,少了一些成员函数,std::unique_lock类有unlock函数,可以手动释放锁,所以条件变量都配合std::unique_lock使用,而不是std::lock_guard,因为条件变量在wait时需要有手动释放锁的能力,具体关于条件变量后面会讲到。

std::atomic相关

c++11提供了原子类型std::atomic<T>,理论上这个T可以是任意类型,但是我平时只存放整形,别的还真的没用过,整形有这种原子变量已经足够方便,就不需要使用std::mutex来保护该变量啦。看一个计数器的代码:

struct OriginCounter { // 普通的计数器 int count; std::mutex mutex_; void add() { std::lock_guard<std::mutex> lock(mutex_); ++count; }
void sub() { std::lock_guard<std::mutex> lock(mutex_); --count; }
int get() { std::lock_guard<std::mutex> lock(mutex_); return count; }};
struct NewCounter { // 使用原子变量的计数器 std::atomic<int> count; void add() { ++count; // count.store(++count);这种方式也可以 }
void sub() { --count; // count.store(--count); }
int get() { return count.load(); }};

是不是使用原子变量更加方便了呢?

std::call_once相关

c++11提供了std::call_once来保证某一函数在多线程环境中只调用一次,它需要配合std::once_flag使用,直接看使用代码吧:

std::once_flag onceflag;
void CallOnce() { std::call_once(onceflag, []() { cout << "call once" << endl; });}
int main() { std::thread threads[5]; for (int i = 0; i < 5; ++i) { threads[i] = std::thread(CallOnce); } for (auto& th : threads) { th.join(); } return 0;}

volatile相关

貌似把volatile放在并发里介绍不太合适,但是貌似很多人都会把volatile和多线程联系在一起,那就一起介绍下吧。

volatile通常用来建立内存屏障,volatile修饰的变量,编译器对访问该变量的代码通常不再进行优化,看下面代码:

int *p = xxx;int a = *p;int b = *p;

a和b都等于p指向的值,一般编译器会对此做优化,把*p的值放入寄存器,就是传说中的工作内存(不是主内存),之后a和b都等于寄存器的值,但是如果中间p地址的值改变,内存上的值改变啦,但a,b还是从寄存器中取的值(不一定,看编译器优化结果),这就不符合需求,所以在此对p加volatile修饰可以避免进行此类优化。


注意:volatile不能解决多线程安全问题,针对特种内存才需要使用volatile,它和atomic的特点如下:
std::atomic用于多线程访问的数据,且不用互斥量,用于并发编程中
volatile用于读写操作不可以被优化掉的内存,用于特种内存中

std::condition_variable相关

条件变量是c++11引入的一种同步机制,它可以阻塞一个线程或者个线程,直到有线程通知或者超时才会唤醒正在阻塞的线程,条件变量需要和锁配合使用,这里的锁就是上面介绍的std::unique_lock。

这里使用条件变量实现一个CountDownLatch:

class CountDownLatch { public: explicit CountDownLatch(uint32_t count) : count_(count);
void CountDown() { std::unique_lock<std::mutex> lock(mutex_); --count_; if (count_ == 0) { cv_.notify_all(); } }
void Await(uint32_t time_ms = 0) { std::unique_lock<std::mutex> lock(mutex_); while (count_ > 0) { if (time_ms > 0) { cv_.wait_for(lock, std::chrono::milliseconds(time_ms)); } else { cv_.wait(lock); } } }
uint32_t GetCount() const { std::unique_lock<std::mutex> lock(mutex_); return count_; }
private: std::condition_variable cv_; mutable std::mutex mutex_; uint32_t count_ = 0;};

关于条件变量其实还涉及到通知丢失和虚假唤醒问题,因为不是本文的主题,这里暂不介绍,大家有需要可以留言。

std::future相关

c++11关于异步操作提供了future相关的类,主要有std::future、std::promise和std::packaged_task,std::future比std::thread高级些,std::future作为异步结果的传输通道,通过get()可以很方便的获取线程函数的返回值,std::promise用来包装一个值,将数据和future绑定起来,而std::packaged_task则用来包装一个调用对象,将函数和future绑定起来,方便异步调用。而std::future是不可以复制的,如果需要复制放到容器中可以使用std::shared_future。

std::promise与std::future配合使用

#include <functional>#include <future>#include <iostream>#include <thread>
using namespace std;
void func(std::future<int>& fut) { int x = fut.get(); cout << "value: " << x << endl;}
int main() { std::promise<int> prom; std::future<int> fut = prom.get_future(); std::thread t(func, std::ref(fut)); prom.set_value(144); t.join(); return 0;}

std::packaged_task与std::future配合使用

#include <functional>#include <future>#include <iostream>#include <thread>
using namespace std;
int func(int in) { return in + 1;}
int main() { std::packaged_task<int(int)> task(func); std::future<int> fut = task.get_future(); std::thread(std::move(task), 5).detach(); cout << "result " << fut.get() << endl; return 0;}

更多关于future的使用可以看我之前写的关于线程池和定时器的文章。

三者之间的关系

std::future用于访问异步操作的结果,而std::promise和std::packaged_task在future高一层,它们内部都有一个future,promise包装的是一个值,packaged_task包装的是一个函数,当需要获取线程中的某个值,可以使用std::promise,当需要获取线程函数返回值,可以使用std::packaged_task。

async相关

async是比future,packaged_task,promise更高级的东西,它是基于任务的异步操作,通过async可以直接创建异步的任务,返回的结果会保存在future中,不需要像packaged_task和promise那么麻烦,关于线程操作应该优先使用async,看一段使用代码:

#include <functional>#include <future>#include <iostream>#include <thread>
using namespace std;
int func(int in) { return in + 1; }
int main() { auto res = std::async(func, 5); // res.wait(); cout << res.get() << endl; // 阻塞直到函数返回 return 0;}

使用async异步执行函数是不是方便多啦。

async具体语法如下:

async(std::launch::async | std::launch::deferred, func, args...);

第一个参数是创建策略:

  • std::launch::async表示任务执行在另一线程

  • std::launch::deferred表示延迟执行任务,调用get或者wait时才会执行,不会创建线程,惰性执行在当前线程。

如果不明确指定创建策略,以上两个都不是async的默认策略,而是未定义,它是一个基于任务的程序设计,内部有一个调度器(线程池),会根据实际情况决定采用哪种策略。

若从 std::async 获得的 std::future 未被移动或绑定到引用,则在完整表达式结尾, std::future的析构函数将阻塞直至异步计算完成,实际上相当于同步操作:

std::async(std::launch::async, []{ f(); }); // 临时量的析构函数等待 f()std::async(std::launch::async, []{ g(); }); // f() 完成前不开始

注意:关于async启动策略这里网上和各种书籍介绍的五花八门,这里会以cppreference为主。

有时候我们如果想真正执行异步操作可以对async进行封装,强制使用std::launch::async策略来调用async。

template <typename F, typename... Args>inline auto ReallyAsync(F&& f, Args&&... params) { return std::async(std::launch::async, std::forward<F>(f), std::forward<Args>(params)...);}
总结





  std::thread使线程的创建变得非常简单,还可以获取线程id等信息。

  std::mutex通过多种方式保证了线程安全,互斥量可以独占,也可以重入,还可以设置互斥量的超时时间,避免一直阻塞等锁。

•  std::lock通过RAII技术方便了加锁和解锁调用,有std::lock_guard和std::unique_lock。

•  std::atomic提供了原子变量,更方便实现实现保护,不需要使用互斥量

•  std::call_once保证函数在多线程环境下只调用一次,可用于实现单例。

•  volatile常用于读写操作不可以被优化掉的内存中。

•  std::condition_variable提供等待的同步机制,可阻塞一个或多个线程,等待其它线程通知后唤醒。

•  std::future用于异步调用的包装和返回值。

•  async更方便的实现了异步调用,异步调用优先使用async取代创建线程

关于c++11关于并发的新特性就介绍到这里

参考资料

https://blog.csdn.net/zhangzq86/article/details/70623394
https://zh.cppreference.com/w/cpp/atomic/atomic
https://zhuanlan.zhihu.com/p/33074506
https://www.runoob.com/w3cnote/c-volatile-keyword.html
https://zh.cppreference.com/w/cpp/thread/async
《深入应用c++11:代码优化与工程级应用》
《Effective Modern C++》




十大经典排序算法(动态演示+代码)

C语言与C++面试知识总结

数据结构之堆栈

一文轻松理解内存对齐
一文轻松理解打印有效日志

一文读懂C语言与C++动态内存

面试中常见的C语言与C++区别的问题

数据结构之线性表

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭