当前位置:首页 > 通信技术 > 无线通信电子电路图
[导读] 了解用途  了解所读的电子电路原理图用于何处、起什么作用,对于弄请电路工作原理、各部分的功能及性能指标都有指导意义。浏览下图可知:这是一个典型的全波段收音机电路图。其用途是将接收到的高频

了解用途 

了解所读的电子电路原理图用于何处、起什么作用,对于弄请电路工作原理、各部分的功能及性能指标都有指导意义。浏览下图可知:这是一个典型的全波段收音机电路图。其用途是将接收到的高频信号通过输入电路后与收音机本身产生的一个振荡电流一起送入变频管内进行“混合”(混频),混频后在变频级负载回路(选频)产生一个新的频率(差频),即中频(465kHz),然后通过中放、检波、低放、功放后,推动扬声器发声。当然,还要求对振荡频率进行调节(f振-f信=465kHz),并能调节音量的大小。

找出通路 

指找出信号流向的通路。通常。输入在左方、输出在右方(面向电路图)。信号传输的枢纽是有源器件,所以可按它们的连接关系来找。从左向右看过去,此电路的有源器件为BG1(变频管)、BG2与BG3(中放管)、BG4与BG5(低放管)、BG6与BG7(功放管),因此可大致推断信号是从BG1的基极输入,经过振荡并混频后产生中频信号,再经过两级中放,然后由检波器把中频信号变成音频信号,最后经过低放、功放后送至扬声器,这样,信号的通路就大致找了出来。通路找出后。电路的主要组成部分也就出来了。

化整为零 

沿信号的主要通路。根据各基本单元电路或功能电路,将原理图分成若干具有单一功能的部分。划分的粗细程度与读者掌握电路类型的多少及经验有关。 

根据上述通路可清楚地看出,整个电路可分别以BZ1及D1(2AP9)为界分成三部分,我们称之为变频级、中放级(包括检波级)和低功放级(输出)。

分析功能 

划分成单元电路后,根据已有的知识。定性分析每个单元电路的工作原理和功能。 1.输入回路和变频级         

该部分的任务是将接收到的各个频率的高频信号转变为一个固定的中频频率(465kHz)信号输送到中放级放大。它涉及到两个调谐回路: 

一个是输入调谐回路,一个是本机振荡回路。输入调谐回路选择电感耦合形式(磁棒线圈B1),本机振荡回路选择变压器耦合振荡形式(B2)。 

由于双连可变电容器(C1a、C1b)可同轴同步调谐输入回路和本机振荡回路的频率,因而可使:二者的频率差保持不变。 

变频级电路的本振和混频由一只三极管BG1担任。由于三极管的放大作用和非线性特性,所以可获得频率变换作用。从下图中可以看出:这是一个振荡电压由发射极注入、信号由基极注入的变频级。两个信号同时在晶体管内混合,通过晶体管的非线性作用再通过中频变压器BZ1的选频作用,选出频率为f振-f信=465kHz的中频调幅波送到中放级。

中放级(含检波)           

1)中频放大级中放级采用的是两级单调谐中频放大。变频级输出的中频调幅波信号由BZ1次级送到BG2的基极进行放大,放大后的中频信号再送到BG3的基极,由BZ3次级输出被放大的信号。三个中频变压器都应准确调在465kHz。 

中频放大级的特点是用并联的LC调谐回路作负载。其原因是:并联谐振回路同串联谐振回路一样,能对某一频率的信号产生谐振,不同的是在谐振时。串联谐振回路的阻抗很小,电路中的电流很大,阻抗越小,Q值越高;而并联谐振回路在谐振时,阻抗很大,回路两端电压很高,并联阻抗越大,损耗越小,Q值越高。

由于中频放大器采用了谐振于465kHz的并联回路作负载。因此用了中频放大器后,大大提高了整机的选择性。 

2)检波级在超外差式收音机中,虽然经过变频级把高频信号变成了中频信号,但是中频信号仍然是调幅信号。因此需要依靠检波器把中频信号变成低频信号(音频信号),BZ3次级送到检波二极管的中频信号被截去了负半周,变成了正半周的调幅脉动信号,再选择合适的电容量滤掉残余的中频信号,即可取出音频成分送到低放级。     检波输出的音频脉动信号经R7、C13滤波得到的直流成分作为自动增益(AGC)电压。馈入第一中放管BG2基极,以达到自动稳定中放增益的目的。

低功放级        

1)低放电路从检波级输出的中频信号。还需要进行放大再送到扬声器。为了获得较大的增益。通常前级低频放大选用BG4、BG5两级。 

BG4、BG5采用直接耦合方式。BG4基极的偏置电压取自于BG5发射极电阻R14上的电压,因此对直流工作点有强烈的负反馈,有利于稳定工作点。低放级与功放级之间的激励采用的是变压器(B3)耦合方式。 

2)功放级功放级采用两只相同类型的NPN管于BG6、BG7组成OTL对称式电路,两管轮流工作,使负载(扬声器)上得到完整的正弦波电压。 

R16、R17组成BG6的偏置电路,R18、R19组成BG7的偏置电路。R15、C12、C16组成电源滤波电路,电容C19用来改善音质。

全波段收音机的电路图分析

全波段收音机的电路图分析

全波段收音机的电路图分析

全波段收音机的电路图分析

全波段收音机的电路图分析

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭