当前位置:首页 > 智能硬件 > 安全设备/系统
[导读] 挑战:为DARPA挑战赛开发一辆参赛智能车,可自动穿越郊区环境。 方案:使用NI LabVIEW图形化开发环境与NI硬件平台对智能车进行快速开发、测试以及原型,从而赢得挑战赛。

挑战:为DARPA挑战赛开发一辆参赛智能车,可自动穿越郊区环境。

方案:使用NI LabVIEW图形化开发环境与NI硬件平台对智能车进行快速开发、测试以及原型,从而赢得挑战赛。

DARPA城市挑战赛要求路上车辆在城市环境中无人驾驶行驶。在整个赛程中,全自主的无人车要在不到6小时中行驶60英里,并在道路、十字路口、停车场等交通环境里行驶。比赛开始时,一份任务文档规定了比赛道路中的检查站,参赛车辆必须按规定驶过。

为了尽快到达检查站,赛车通过对限速、可能的道路阻塞、交通状况等因素的考虑,选择合适的行驶路线。赛车在行驶中还必须遵守交通规则,与有人驾驶车辆及其它无人车辆间的正确交互。赛车需在规定车道内行驶,对其它车辆的车速或超车做出安全的反应。此外,在十字路口必须依照路权规则安全行驶,规避静态或动态的障碍物,时速达到30 mph。

我们的Victor Tango车队仅有12个月用于赛车开发,且必须满足前所未有的挑战。我们将设计分为四个主要部分:基础平台、感知、规划、及通信。

每部分都充分利用了美国国家仪器公司软硬件的优势。NI硬件有助于连接车辆已有系统,为操作人员提供界面。我们采用LabVIEW 图形化编程环境来开发软件,包括通信构架、传感器处理和目标识别算法、激光测距仪和基于视觉的路况探测、高级驾驶行为、及底层车辆接口。

基础平台

Odin是由福特2005年的Escape Hybrid改装的无人驾驶车辆。通过NI CompactRIO系统与Escape的系统连接,实现对节流阀、转向装置、变速、及刹车的线传控制。车队采用LabVIEW及LabVIEW控制设计及仿真模块开发道路曲率及速度控制系统,通过LabVIEW Real-TIme及LabVIEW FPGA模块发布到CompactRIO系统,创建独立的车辆平台。我们还采用LabVIEW 触摸板模块为NI TPC-2006触摸板计算机开发用户界面,并安装于车辆仪表盘上。

感知

为满足赛车在城市挑战赛中的行为需求,Odin必须能够自行定位,探测路况周边环境及正确车道,感知道路上的所有障碍,并能正确的将障碍识别为汽车。因此,Odin上安装了许多传感器,包括在缓冲器平面上安装的三台IBEO四面激光测距仪(LRFs),在车顶架上安装的四台SICK LRF和两个计算机视觉摄像头,以及Novatel高精度GPS/IMU系统。

针对每种感知需求,设计中都采用了多个传感器,以确保最大的真实性及可靠性。为实现灵活的传感器组合,规划软件忽略了原始传感器数据,采用特定任务组件生成的独立传感器感知信息集。定位组件包括LabVIEW Kalman滤波器,用于跟踪赛车的位置及方向。道路探测组件采用NI视觉开发模块,通过摄像头及LRF数据的组合,确定临近路段的路况环境及车道位置。目标分类组件采用LabVIEW来处理IBEO数据,探测障碍并将其分类为静态或动态;动态障碍预报器预测道路及其它车辆的行驶动向。

规划

Odin上的规划软件采用混合审议-反应模型,将上层决策与下层响应分配到不同组件。两类组件以独立频率同步运行,这样车辆就能对紧急状况做出响应,同时又无需重新规划整条路径。分离决策组件后,便可独立对每个系统进行测试,并实现并行开发,这对于缩短城市挑战赛前的设计时间表来说非常重要。

路径规划组件采用A*搜索算法做出路径选择判断,从而行驶过所有检查点。驾驶行为组件采用基于行为的LabVIEW状态机构架,负责让赛车遵守交通规则,并引导赛车沿规划路径行驶。运动规划组件采用迭代轨迹搜索避免障碍,并将赛车引导到期望的路径上。然后,系统将运动方案送到车辆接口,并转换为激励器控制信号。

通信

整个通信框架的开发都采用了LabVIEW。我们实现了SAE AS-4无人系统联合体系结构(JAUS)协议,可进行自动化、动态配置,并提高了城市挑战赛软件在未来的可重用性及商业潜力。同时,我们将每个软件模块作为JAUS组件,所有模块间的交互均在该LabVIEW框架内实现。每个软件模块作为独立组件,可在Windows或Linux®操作系统中异步运行。有了这一通信主构架, LabVIEW编写的软件模块与其它语言编写的模块的交互、重用变得异常容易。

LabVIEW的优势

LabVIEW为我们的团队提供了成功的编成环境,主要有以下原因。作为主要由机械工程师组成的团队,无需计算机学科背景,就能采用LabVIEW开发高级、高层的感知及规划算法。此外,LabVIEW与硬件之间简单的交互操作,提高了实现传感器处理及车辆控制中高定时精度要求进程的能力。

LabVIEW还提供直观且易用的调试环境,可实时执行及监测源代码,轻松实现硬件在环调试。LabVIEW环境使测试时间最大化,实现了快速原型设计及大量设计循环。缩短了参加城市挑战赛及开发设计本身的时间表。这些能力对车队的成功至关重要。

我们成功通过LabVIEW及NI硬件开发了无人驾驶赛车,完成了城市挑战赛,这些对机器人技术来说是从未尝试过的挑战。Odin是仅有的一辆全面采用LabVIEW的赛车,并且取得了第三名的成绩,仅比领先者慢了几分钟。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

NI提供的软件包经济省时,不仅帮助开发人员节省时间,还为创客提供了新的机遇

关键字: LabVIEW 自动化测试系统

在科技日新月异的今天,激光雷达测量技术以其高精度、高效率和高可靠性,在众多领域发挥着至关重要的作用。从无人驾驶汽车到航空测绘,从机器人导航到气象观测,激光雷达测量技术已经成为现代社会不可或缺的组成部分。本文将对激光雷达测...

关键字: 激光雷达 雷达 无人驾驶

为增进大家对无人机的认识,本文将对无人机是否需要实名登记以及无人机最新的飞行管理暂行条例予以介绍。

关键字: 无人机 指数 无人驾驶

为增进大家对无人驾驶的认识,本文将对无人驾驶优点以及特斯拉无人驾驶予以介绍。

关键字: 无人驾驶 指数 特斯拉

强大的图形化编程工具使整个测试和测量过程的各个方面实现可视化

关键字: LabVIEW 图形化编程工具

为增进大家对自动驾驶的认识,本文将对自动驾驶的优点以及自动驾驶的发展现状予以介绍。

关键字: 自动驾驶 指数 无人驾驶

2023年9月4日 – 专注于引入新品推动行业创新™的电子元器件代理商贸泽电子 (Mouser Electronics)宣布将于9月11-14日举办2023贸泽电子技术创新周首场专题活动。本期活动以“智能网联汽车” 为主...

关键字: 智能网联汽车 无人驾驶 5G

为增进大家对自动驾驶的认识,本文介绍自动驾驶和无人驾驶的异同。

关键字: 自动驾驶 指数 无人驾驶

摘要:对于每一型新机试飞,或者是重大的研究性试飞和验证试飞,都必须实施遥测监控。现基于TTS(TextToSpeech)语音合成技术,结合飞行试验遥测监控系统的不足,利用TTS引擎在LabVIEW开发环境下设计并实现了遥...

关键字: 飞行试验遥测监控系统 TTS LabVIEW

在当今科技发展迅猛的时代,无人驾驶车辆已经成为人们关注的热点话题。作为无人驾驶技术中关键的感知设备之一,激光雷达技术起着至关重要的作用。本文将详细探讨激光雷达技术在无人驾驶中的作用,并分析其优势和未来发展趋势。

关键字: 无人驾驶 激光雷达 定位
关闭
关闭